EUROPEAN MASTER IN LAW AND ECONOMICS
ACADEMIC YEAR 2007-2008

LAW AND ECONOMICS OF BUNDLING BY
NON-DOMINANT FIRMS

CANDIDATE:
GIOVANNI FORMICA

SUPERVISOR:
PROF. ROGER VAN DEN BERGH
AUTHORSHIP DECLARATION

I hereby declare and confirm that this thesis is entirely the result of my work except where otherwise indicated. This thesis is not used as a part of any other examination and has not yet been published

8th August 2008

Giovanni Formica

ACKNOWLEDGEMENTS

I gratefully acknowledge the supervision and guidance received from professor Roger Van den Bergh. I’m thankful for all his contributions, in terms of advice and support. All errors herein are mine alone.
Bundling refers to the ubiquitous practice of offering a product under the condition that another product is also bought. In particular, one should distinguish between pure bundling, where the firm offers only the package, from mixed bundling, where consumers are allowed to choose between the entire system and the purchasing of single components. Instances of pure bundling are widespread: kitchens sold as a whole, bed-and-breakfast, newspapers with Sunday supplements, master programmes. Instead, fast food restaurants’ practice of offering both fixed menus (drinks, fries and sandwich or pizza) and the opportunity to order à la carte is an example of mixed bundling.

A finer distinction in economics is that between tying and bundling, with the former differing from the latter in that refers to packaged sales whose components are sold in variable proportions, i.e., consumers can choose the quantity of the tied good they are willing to purchase. A classical example is the joint sale of durable goods, replacement parts and repair services.

To be sure, courts and prominent theorists distinguish the two terms also on the basis of their (un)lawfulness, in particular describing tie-ins as an illegal subset of the larger group of packaged sales (Hylton and Salinger, 2002, p.234). As a matter of terminology, in this work we will use the two terms as synonymous, although most of our conclusions just apply to fixed proportion bundles, i.e. to what a rigorous theorist would specifically qualify as (pure) bundling.

According to the so called leverage theory, as recently revived in a more convincing, game-theoretic fashion by Whinston (1990) to address Chicagoans’ critiques, pre-commitment to tie the sale of different products provides a mechanism whereby a firm holding market power in the tying product can lever on this power to foreclosure -and thereby monopolize- sales in the tied-product market. Moreover, it’s undisputed principle in law-and-economics scholarship that, for this mechanism to work and for bundling to be profitable (hence credible) and welfare-detrimental as exclusionary practice, firms must

1 Through technological or design integration, a monopolist pre-commits herself to behave more aggressively in the tied market, should a new firm enter the latter. Indeed, absent any pre-commitment, bundling would not be a rational strategy after entry, hence not a credible entry deterrent.
hold a (quasi)monopolistic control of at least one component-market (Posner, 1976). The influential strength of this view is confirmed by the almost exclusive focus, in the economic literature, on bundling as means to extend or preserve market power. More substantially, the dominance-hypothesis has exercised large influence on competition law practice of both sides of the Atlantic, accordingly also inspiring some far-reaching proposals (e.g., market share safe-harbour).

However, following a recent stream of economic literature partially related to the issues addressed in this paper, we try to prove that the traditional view applies only under limited conditions, which are not widespread in modern industries. To this end, we will survey recent contributions in bundling literature and we will put their outcomes in a common and workable frame, to draw consistent implications for competition policy. In particular, by focussing on asymmetric settings where a multi-product firm without dominance competes against specialist sellers of substitute components, we identify market circumstances under which a non-monopolist’s commitment to pure bundling may be credible and harm social welfare. In this respect, we draw a basic distinction between complementary and independent components. Indeed, the profitability trade-off as well as the potential social welfare implications vary with the nature of demand interrelation among components.

This paper should contribute to explain the widespread diffusion of bundling in more competitive settings, without exclusively resorting to efficiency and pro-competitive justifications. Indeed, it has been suggested that economies of scale (or scope) in production and provision, reduction of information costs, reputation protection or quality assurance should authorize presumptive justification for bundling in non-monopolistic industries (Kobayashi, 2005, p.708). In this paper, we argue that anticompetitive purposes may offer, under certain conditions, a complementary and sometimes sounder explanation for bundling of non-dominant firms.

2 For a comprehensive survey of the bundling literature, see Kobayashi, 2005.
The remainder of the paper is organized as follows. In Section II, we identify reasonability conditions for tying by non-dominant companies and we draw a dynamic social welfare impact-assessment, as a basis to infer economics-based recommendations for competition policy. In Section III, we analyse the current legal treatment of bundling in US and Europe, to show a certain “intolerance” -implicit in strained decisions or systemic inconsistencies- towards dominance-assessment as a preliminary screening for illegality. Section IV sums up the main findings and incorporates them into a consistent policy frame.

II. THE ECONOMICS OF BUNDLING BY NON-DOMINANT FIRMS

II.1. BUNDLING OF COMPLEMENTARY GOODS

Production and distribution networks are often made of complementary components, typically available in rival brands, so that consumers are allowed to assemble their preferred system of substitute complements.

In this section, we discuss firms’ incentives to engage in pure bundling in such market settings. In particular, through a generalization of the Cournot’s model of duopoly-complements, we analyse profitability and social desirability of pure bundling by integrated sellers, in a context of specialist, imperfect competition among substitutable complements. These issues are not properly addressed in industrial economics, because of the non shareable extension of influential arguments about non-profitability and ultimate irrationality of bundling in perfectly competitive markets.

It can be demonstrated that once we depart from an idealized world of perfect or Bertrand competition to consider more realistic settings of product differentiation, final conclusions on bundling rationality may differ significantly, even absent any efficiency justification. Indeed, under a number of factual circumstances, a multi-product or generalist firm can exploit its market advantage over specialist competitors to force the purchasing by clients that in perfectly competitive settings would have otherwise oriented their choices or completely avoided the purchasing.
II.1.1 CROSS-PRICE EXTERNALITIES: MONOPOLY VERSUS COMPETITION

Firms often tie for strategic reasons, regardless of their market position. In case of complementary goods, an efficiency justification relies on the internalization of complements’ cross-price effects. As originally pointed out by Cournot in a seminal article of 1838, independent sellers of complementary inputs would charge the whole system higher than horizontally integrated monopolists or coordinated specialist sellers (complementary oligopoly problem). Indeed, a single decision-maker completely internalizes the external effect of the price-setting in one component-market on the demand for other complements, hence having incentives to profitably lower aggregate prices\(^4\). Therefore, bundling of complements, each supplied in a monopolistic setting, results in a Pareto improvement, whereby both consumers (lower prices) and sellers (higher profits) are better off (see proof, Appendix).

This result rests upon the uniqueness of each component or, more properly, on the uniqueness of their respective sources of supply. Indeed, as argued by Dari-Mattiacci and Parisi (2005), if firms compete à la Bertrand, the very existence of at least one (perfect) substitute for each item automatically counter the complementary-oligopoly problem and is conductive to market outcomes that are never worse -and generally better– than those of a (single or joint) monopoly\(^5\). Indeed, Bertrand competition leads to a race to marginal-cost pricing in each component-market (hence to the maximisation of social welfare), regardless of the integrated firm’s bundling decision\(^6\).

\(^4\) The complementary-oligopoly problem can be seen as the horizontal equivalent of double marginalization in vertical settings (Nalebuff and Majerus, 2003, p.26).

\(^5\) However, this outcome does not occur when the multi-product firm is monopolist at least at one-level (see Appendix).

\(^6\) Dari-Mattiacci and Parisi (2005, p.9-10) find that, when firms compete à la Cournot, the presence of substituting component (regardless of their number) is welfare harmful. Firms’ incentive to under-cut quantity supplied by competitors results in a “near disappearance of the market” (aggregate quantity falls to zero). An outcome not desirable on a social viewpoint.
II.1.1 IMPERFECTLY COMPETITIVE MARKETS AND NON-DOMINANT FIRMS’ INCENTIVES TO BUNDLE

We have argued that perfect competition as well as homogeneous competing offering in oligopolistic component-markets end up with eliminating the price advantage of integrated firms. Unfortunately, this striking result no longer holds when one removes the assumption of perfect substitutability and considers more realistic settings of horizontal differentiation. In effect, imperfect competition does not counter effectively the complementary-oligopoly problem (differentiation confers some degree of market power), yet guarantees undisputed market advantage over specialist sellers of differentiated components. These arguments have been used to explain the original success of software-bundles, like MsOffice (Denicolò, 2000, p.178).

However, a generalist or multi-product firm does not always have rational incentives to exploit through bundling the market advantage stemming from its simultaneous (non-monopolistic) presence in each input-market. The eventual exploitation would come at costs, those of increased market pressure. Indeed, the very decision to bundle makes competition tougher, insofar reduces product differentiation and intensifies firms’ incentives to undercut rivals.

At the end of the day, when facing imperfect competition in each component-market, multi-product firms’ incentives to bundle lie on the trade-off between gains from price coordination and losses from stronger competition of independent sellers (Nalebuff, 2000). Indeed, on one hand, when deciding to bundle, a generalist firm can create an advantageous market position over uncoordinated component-sellers, because of the internalization of complements’ cross-price effects (internalization effect). On the other hand, by reducing differentiation and strengthening incentives to undercut rivals, bundling leads to tougher price competition⁷ (differentiation effect).

The trade-off intuition suggests some *prima facie* inference on non-monopolists’ rational incentives to bundle. One could easily guess that the larger the

⁷ Bundling would contrast the principle of differentiation, according to which firms want to differentiate themselves as much as possible in order to relax price competition (Tirole, 1994, p.286).
dimension of the bundle, the higher the vertical gains from price coordination, the larger the likelihood of profitable bundling. And equally, the lower the initial product differentiation, the weaker the relevance of the differentiation effect, the higher the probability of tie-in sales. Such a basic intuition will be confirmed by the outcomes of the economic models presented in next subsections.

As regards welfare impact, at first sight, one could argue that the short-term risible price reduction (that, in most cases, merely amounts to wealth redistribution between firms and consumers) is largely overweighed by restriction of choice, entry deterrence and dynamic inefficiencies. Then, the long-run impact could be even more serious, provided that the stable first-mover-advantage of the integrated bundler may result in progressive erosion of rivals’ market shares, particularly when network effects or scale economies are at stake. These effects, including potential efficiency benefits, are described in depth in section II.4, as a starting point for drawing sound policy implications.

II.2.III THE MODEL WITH COMPLEMENTARY GOODS

Following Matutes and Regibeau (1992) and Denicolò (2000), we use a model of imperfect competition with product differentiation, where a generalist firm (A), producing the two complementary components \((c = y, z)\) of a system, competes in price against two specialist rivals (B and C), each selling only one substitutable component \((B\) sells only \(y; C\) only \(z))\). This accounts to a Bertrand duopoly with differentiated products in each component-market.

In particular, we use a two-stage game in which, in the fist phase the generalist firm choices between pure bundling and independent pricing based on the anticipation of future profits it can get in the second stage, where prices are simultaneously set on the marketplace. Then, by comparing generalist firm’s profits with bundling and independent selling under the ordinary assumption of specialist rivals’ rational (i.e., profit-maximizing) price reaction, we analyse the integrated suppliers’ incentives to engage in pure bundling in the first place. This amounts to find, by backward induction, the sub-game perfect equilibrium of such a sequential game.
To make our theoretical frame flexible enough to fit a large number of real-life scenarios and effective in predicting an extensive set of market outcomes, we progressively remove restrictive assumptions on the degree of differentiation and on the size of systems involved. Therefore, the model allows to predict firms’ likely choices in the highlighted trade-off between *internalization* and *differentiation effect*, proving in more formal fashion the basic intuition for which generalist firms’ incentives to bundle depends both on the degree of differentiation and on bundle size.

Maximum Differentiation

We start the analysis with an extreme case of imperfect competition. For sake of simplicity and without any loss of generality, we assume zero stand-alone value for each individual item (*e.g.*, hardware has zero value without software) or, put differently, no outside option unless components are combined in the fixed ratio $1:1^8$.

We also assume full compatibility among components9. Thus, four alternatives are available on the marketplace, namely a *pure system* from firm A and other three *mixed systems*, obtained by assembling substitutable components of different brands. More formally, a single element b of the option set H is designed by $(f_1; f_2)$ and represents the consumption of a system made of component y from firm $f_1 = A, B$ and component z from firm $f_2 = A, C$.

We assume that the generalist firm can either individually sell each item or engage in pure bundle; in other words, we do not include mixed bundling in the available strategy set10. To consider product differentiation in both markets, we use a two-dimensional Hotelling model11. We start with the assumption of maximum differentiation in both markets: firm A is located at the origin, while B and C are respectively at

8 Components are *perfect complements*.

9 Matutes and Regibeau (1988) and Economides (1989) find that compatibility is a (strict) dominant strategy when the demand for mixed systems is as large as the demand for pure systems.

10 Stremersch and Tellis (2002, p.62-64) argue that mixed bundling is always dominated by pure bundling, when, as in our models, reservation prices for the same system do not vary across consumers.

11 For complete treatment of spatial differentiation models, see Tirole, 1994, chapter7. The author distinguishes between linear (Hotelling model) and circular location of firms (Salop model).
the upper extremes of the \(x\)- and \(y\)-axis. Therefore, the locations of the four available systems draw the vertices of an unit square (Figure 1). Consumers, whose mass is normalized to one, are uniformly distributed over such a square. The location (\(i.e.,\) brand preferences) of each consumer is denoted by \((x_1; x_2)\), where \(x_1\) represents consumer’s distance from the variety \(A\) of \(y\) and \(x_2\) her distance from brand \(A\) of \(z\)^12.

![Figure 1](image.png)

Without any loss of generality, marginal costs are all set equal to zero; thus, there are no economies/diseconomies of scale or scope. The net utility for a consumer purchasing a system made of the variety \(i = A, B\) of the component \(y\) and the brand \(j = A, C\) of the component \(z\) will be:

\[
U_{ij} = w - t(d_{yv} + d_{cv}) - p_{yv} - p_{cv} \tag{1}
\]

where \(w\) represents the consumers’ reservation price for the entire system (we assume rectangular demand, \(i.e.,\) all consumers evaluate equally existing substitutable systems), \(t\) the parameter of disutility from purchasing a product that is somewhat distant from her ideal configuration, \(p_{cv}\) the unit price of variety \(v = A, B, C\) of the component \(c = x, y\) and \(d_{cv}\) the consumer’s distance from the brand \(v = A, B, C\) of the component \(c = x, y\).

We use linear transportation costs. Moreover, to further simplify the analysis, we assume \(t = 1\), and we confine ourselves to cases where consumers, when getting nonnegative surplus, are willing to purchase at most one system (the purchasing of individual items is irrational, under the assumption of perfect complementarity).

12 Consequently, a consumer located at \((x_1; x_2)\) is \((1-x_1)\) from firm \(B\) and \((1-x_2)\) from firm \(C\).
Then, to avoid unnecessary complications, we also imagine, as a first step of the analysis, that the reservation price is high enough to have the potential market (the entire unite square) fully served at equilibrium, thus avoiding situations of local monopoly or partial competition13. However, the last assumption, which is irrelevant to the immediate aims of this section (namely, drawing the conditions under which bundling is the \textit{Nash sub-perfect equilibrium} of non-monopolistic settings) will be relaxed afterward (see \textit{infra}, section II.4).

Under the above assumptions, a rational consumer will choose the offering with the lowest \textit{perceived expenditure}, equal to aggregate price plus transportation costs.

\textit{INDEPENDENT PRICING (NO BUNDLING).} The baseline case is that in which the generalist firm A sells separately each item and competes \textit{à la Bertrand} against specialist providers B and C of imperfectly substitutable, yet compatible, components. In this case, consumers are allowed to \textit{mix and match}. They will make their purchasing in a component-by-component fashion, by considering how far each rival brand is from their ideal configuration (\textit{i.e.,} size of transportation costs) and comparing prices of substitutes. Given the uniform distribution of consumers on the unit square and firms’ symmetry, the market is equally split among the four available alternatives. In particular, the line
\[
\overline{x}_1 = x_{\text{std}(1)} = (1 + p_B - p_{A_y})/2
\]
separates the location of consumers choosing different suppliers (A and B) of component y, and the line
\[
\overline{x}_2 = x_{\text{std}(2)} = (1 + p_C - p_{A_z})/2
\]
separates purchasers of different varieties (A and C) of z.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{Figure 2}
\end{figure}

13 See Matutes and Regibeau (1992).
Proposition 1. Under independent pricing, equilibrium prices and profits are:

\[p_{Ay} = p_B = p_{Az} = p_C = 1 \]
\[\pi_{Ay} = \pi_B = \pi_{Az} = \pi_C = 0.5 \]
\[\pi_A = \pi_{Ay} + \pi_{Az} = 1 \]
\[\pi_B = \pi_C = 0.5 \]

Proof. See Appendix

Pure Bundling. When \(A \) engages in pure bundling, only the pure system \(A_yA_z \) and the mixed system \(BC \) (obtained by assembling \(A \)’s rival component-brands), are available on the marketplace. At given prices \(P_{AyAz} \), \(p_B \) and \(p_C \) a consumer located in \((x_1; x_2)\) will be indifferent between \(A_yA_z \) and \(BC \) iff:

\[w - x_1 - x_2 - P_{AyAz} = w - (1 - x_1) - (1 - x_2) - p_B - p_C \quad (2) \]

Therefore, indifferent consumers will be located on the line:

\[x_2 = \frac{p_B + p_C - P_{AyAz} + 2}{2} - x_1 \quad (3) \]

Under pure bundling, the integrated firm internalizes the positive effect of a decrease in the price of one component on the demand for the whole system, hence having incentives to under-price specialist competitors. Such an internalization effect implies that \(p_B + p_C - P_{AyAz} = d > 0 \). The price advantage of \(A \) (\(d > 0 \)) makes the pure bundle significantly more attractive.

Formally, under \(d > 0 \), consumers located in \((0,1)\) and in \((1,0)\) purchase the pure bundle \(A_yA_z \) (both vertical and horizontal intercepts of the indifference line \((3) \) exceed one) and the market is asymmetrically split as in Figure 3. The generalist firm, by under-pricing specialist competitors, will serve more than a half of the market; its actual market shares are positively related to the dimension of the price difference or internalization advantage \(d \).
Proposition 2. Under bundling, equilibrium prices and profits are:

\[
P_{A'} = 1.45 \\
P_B = p_C = 0.86 \\
P_{BC} = p_B + p_C = 1.72
\]

\[
\pi_A = 0.91 \\
\pi_B = \pi_C = 0.32
\]

Proof. See Appendix.

INTERPRETATION OF RESULTS. The comparison between profits under bundling and independent pricing suggests that firm \(A \) has no rational incentives to tie when both components are maximally differentiated. Intuitively, this happens because individual incentives to engage in price cutting are stronger under bundling than under independent pricing. When choosing to bundle, a generalist firm can fully internalise the beneficial effect of a price cut in a component-market on the demand for the whole system, hence it has additional incentives to progressively lower prices. More formally, its reaction curve shifts downward. Conversely, specialist competitors’ pricing reactions do not change, whether or not they face a bundling competitor, *i.e.*, their system reaction curve (obtained by aggregating their individual curves in each component-market) remain unchanged. Hence, they will answer with lower prices to firm \(A \)’s more aggressive pricing strategy.

At equilibrium all market players would lose from firm \(A \)’s bundling decision, including the latter. Therefore, generalist firms have no incentives to strengthen competition through pure bundling.

One could reach the hurried conclusion that only efficiency motivations, which are admittedly outside of the predictive power of our formal frame, could justify the daily experienced large diffusion of bundling in many competitive settings. This statement contains an unquestionable truth (our outcomes should be interpreted with caution, because potential efficiencies are totally missed), yet it’s only partial. Obtained results rest upon the restrictive assumptions made so far. By allowing less than maximum differentiation and larger bundle sizes we can demonstrate that bundling by non-monopolists
could be both profitable and welfare detrimental under a wide range of parameters (i.e., of market circumstances).

Variable Degree of Differentiation

In this section, following Denicolò (2000), we relax the assumption of maximum differentiation and we allow for variable degree of substitutability in one component-market\(^{14}\). In particular, to model variable differentiation, we assume that firm \(A\) is located in \((e;0)\) and firm \(B\) in \(((1-e);0)\), where the parameter \(e \in [0;0.5]\) measures the degree of differentiation in the component-market for \(y\). In order to assure the existence of a pure strategy equilibrium for any value of \(e\), we use quadratic transportation costs\(^{15}\) (a consumer located in \((x_1; x_2)\) has to bear a cost of \(t(x_1^2 + x_2^2)\) to reach a system located in \((0;0)\)), and we also assume \(t = 1\).

Independent Pricing (No Bundling). Under independent pricing, the four available systems \(A_A, A_C\) (pure system) \(B_A, A_C\) and \(BC\) (assembled systems) are located respectively in \((e;0), ((1-e);0), (e;1)\) and \(((1-e);1)\). As in the previous case of maximum differentiation, consumers choose component-by-component. The whole market is divided in four symmetric areas, each representing the demand served by alternative systems (Figure 3).

14 Of course, the case of both homogeneous components coincide with the standard Bertrand result of marginal-cost pricing (see above).

15 Tirole (1994, p.280) proves that the use of linear-cost models is not tractable where firms lie within the unit interval, due to discontinuities in individual demand functions.
Proposition 3. Under independent pricing and variable differentiation of component y, equilibrium prices and profits are:

\[p_{Ay} = p_B = 1 - 2e \]
\[p_{Az} = p_C = 1 \]
\[\pi_A = \pi_{Ay} + \pi_{Az} = 1 - e \]
\[\pi_B = 0.5(1 - 2e) \]
\[\pi_C = 0.5 \]

Proof. See Appendix.

PURE BUNDLING. If A bundles, only the pure system \(A_y A_z \) and the assembled package \(BC \) are available on the marketplace. An individual will be indifferent between these two systems if:

\[(x_1 - e)^2 + x_2^2 + p_{AyAz} = (1 - x_1 - e)^2 + (1 - x_2)^2 + p_B + p_C \] \hspace{1cm} (4)

Hence, after simple algebra, indifferent consumers lie on the following line:

\[x_2 = \frac{1}{2} [d + 2(1 - e)] - x_1 (1 - 2e) \] \hspace{1cm} (5)

where, as above, \(d = p_B + p_C - p_{AyAz} > 0 \).

Consumers located in the proximity of the vertex \((1;0)\) buy always the pure bundle.

As observed in Denicolò (2000, p.182), the actual shape of demand areas depends on the choice of consumers located in \((0;1)\) and in its immediate neighbouring, which in turn depends on whether the expression \(d + 2(1 - e)\) is greater then 2. The author distinguishes the following two cases:

a) if \(d > 2e \), a consumer located in \((0;1)\) buys the pure system \(A_y A_z \) and A’s aggregate demand (Figure 4) will be:

\[D_{AyAz} = \frac{1 + d}{2} - \frac{(d - 2e)^2}{8 - 16e} \] \hspace{1cm} (6)

b) if \(d < 2e \)\(^{16}\), a consumer located in \((0;1)\) buys the mixed system \(BC \) and the aggregate demand for the pure system (Figure 5) will be:

\(^{16}\) Note that if \(d = 2e \), a consumer in \((0,1)\) is indifferent between the two systems and the right-sides of (6) and (7) coincide.
\[D_{dydz} = \frac{1 + d}{2} \quad (7) \]

Needless to say, the demand for BC (hence, for specialist rivals’ components) will be equal to the complement to one of \(D_{dydz} \) (the market is fully served by assumption).

Figure 4

\[e,1 \quad (1-e),1 \]

\[e,0 \quad (1-e),0 \]

Figure 5

\[e,1 \quad (1-e),1 \]

\[e,0 \quad (1-e),0 \]

Proposition 4. Case a) applies when \(e \geq \frac{1}{8} \) (sufficiently high degree of differentiation).

Equilibrium prices under bundling will be:

\[p^1_{adydz} = \frac{-6 + 6e + 4\sqrt{e^2 - 22e + 11}}{5} \]

\[p^1_B = p^1_C = \frac{1 - e + \sqrt{e^2 - 22e + 11}}{5} \]
Case b) applies when \(e < \frac{1}{8} \) (low degree of differentiation). Equilibrium prices will be:

\[
P_{A,y,z}^2 = \frac{5}{4} \quad \quad \quad P_B^2 = P_C^2 = \frac{3}{4}
\]

Proof. See Appendix 17.

INTERPRETATION OF RESULTS. A comparison of equilibrium profits suggests that a generalist firm has incentives to bundle when competing varieties of one component are relatively undifferentiated. More specifically, when \(e \geq 1/8 \), demand for bundle \(AA \) is

\[
D_{A,y,z} = \frac{1 + d}{2} \quad \text{(case-b)}, \quad \text{where} \quad d = \left(\frac{3}{4} + \frac{3}{4} - \frac{5}{4} \right) = \frac{1}{4}.
\]

Thus generalist’s profits would be \(\pi_{AA}^B = \frac{25}{32} \) under bundling and \(\pi_{AA}^{NB} = 1 - e \) under independent selling. By comparing profit figures, one easily gets that bundle is a dominant strategy as long as \(e > \frac{7}{32} \) (indeed, \(\pi_{AA}^B > \pi_{AA}^{NB} \) if \(e > \frac{7}{32} \)), that is for low degree of differentiation.

The interpretation of such a result is not straightforward. As observed, in case of maximum differentiation (\(e = 0 \)), firm \(A \) tends to be tougher under bundling, because of the internalization of cross-price effects; conversely, specialist rivals do not change in aggregate their pricing strategies when facing a bundling competitor. All firms would lose from \(A \) adopting the most aggressive strategy, as bundle \(A_yA_z \) is a substitute for both \(B \) and \(C \)'s components (see Appendix, reaction curves). Thus, the equilibrium is one of **component against component.**

However, when one item (in our case, \(y \)) becomes less differentiated (\(i.e., e \to 1/2 \)), \(A \)'s incentives to cut prices under bundling tend to decrease proportionally to the reduction of potential rents it can extract from such an undifferentiated item. At the same time, the specialist seller of the poorly differentiated component (firm \(B \)), by free-riding on consumers who are

17 Note that with \(e = 0 \), you get the same equilibrium outcomes of the previous model with maximum differentiation.
captive for C, tends to becomes softer18. In turn, this relaxed attitude ends up with negatively affecting firm C's sale figures, as B and C's components are perfect complements.

To sum up, when one component is less than fully differentiated, C is always affected negatively by A's decision to bundle. However, bundling decision has an ambiguous impact -both positive and negative- on A and B. The former effect tends to dominate as the degree of differentiation of y decreases. Beyond a certain threshold, the market outcome is one of bundle against components.

To conclude, our results contradict the generally accepted differentiation principle—firms wants maximally differentiate their product in order to soften price competition-, or at least provide with an additional instance of ambiguous incentives to differentiate. In this respect, it's worthwhile noting that the degree of differentiation is a matter of choice. Indeed, firms have the chance to choose their own location or influence consumers’ quality perception via advertising (Tirole, 1994, p.289). This complication would change our model from a two-stage to a three-stage game, where firms choose location at the beginning of their interaction. Unfortunately, the final equilibrium of a game with endogenous decision about market positioning is not easy to predict, and requires further specific research.

\textit{Variable Bundle Size and Elastic Demand}

Until now we have considered two-components bundles. By extending the analysis to larger systems, one reaches the striking result that, even under maximum differentiation of each individual component, bundling is a profitable strategy for a non-monopolist multi-market firm. By using computer simulation and a frame similar to that of our original case (multi-dimensional Hotelling model, maximum differentiation, linear transportation costs, Bertrand duopoly in each component-market), Nalebuff (2000) demonstrates that bundling of systems of \textit{more than four items} is always a dominant strategy for a generalist firm facing specialist competition, even in case of maximum

18 Technically, their system reaction curve moves downward under bundling (\textit{i.e.,} price reactions are softer in aggregate).
differentiation. The following tables illustrate equilibrium prices and profits under bundling and independent pricing for different system sizes.

Table-1. Independent pricing: equilibrium prices and profits

<table>
<thead>
<tr>
<th>Number of items</th>
<th>Price (firm A) each market</th>
<th>Demand (firm A) each market</th>
<th>Total profits</th>
<th>Price (competitor) each market</th>
<th>Profits (competitors) each market</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(^{19})</td>
<td>1</td>
<td>0,5</td>
<td>1</td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0,5</td>
<td>1,5</td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0,5</td>
<td>2</td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0,5</td>
<td>2,5</td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0,5</td>
<td>3</td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0,5</td>
<td>3,5</td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0,5</td>
<td>4</td>
<td>1</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Source: personal elaboration from Nalebuff (2000)

Table-2. Bundling: equilibrium prices and profits

<table>
<thead>
<tr>
<th>Number of items</th>
<th>Firm A's bundle price</th>
<th>Component price by competitors (each market)</th>
<th>Firm A's demand</th>
<th>Firm A's profits</th>
<th>Competitors’ profits (each market)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1,45</td>
<td>0,86</td>
<td>0,63</td>
<td>0,91</td>
<td>0,32</td>
</tr>
<tr>
<td>3</td>
<td>2,09</td>
<td>0,88</td>
<td>0,7</td>
<td>1,47</td>
<td>0,26</td>
</tr>
<tr>
<td>4</td>
<td>2,84</td>
<td>0,92</td>
<td>0,76</td>
<td>2,15</td>
<td>0,22</td>
</tr>
<tr>
<td>5</td>
<td>3,63</td>
<td>0,94</td>
<td>0,79</td>
<td>2,88</td>
<td>0,19</td>
</tr>
<tr>
<td>6</td>
<td>4,48</td>
<td>0,96</td>
<td>0,82</td>
<td>3,69</td>
<td>0,17</td>
</tr>
<tr>
<td>7</td>
<td>5,4</td>
<td>0,99</td>
<td>0,84</td>
<td>4,56</td>
<td>0,15</td>
</tr>
<tr>
<td>8</td>
<td>6,36</td>
<td>1,02</td>
<td>0,86</td>
<td>5,48</td>
<td>0,14</td>
</tr>
</tbody>
</table>

Source: Nalebuff (2000)

By comparing Table 1 and 2, the generalist firms is better off under bundling when the system consists of four or more components. For a three-component package, independent pricing is risibly preferred, yet there could be long-run strategic reasons for choosing tying strategies.

The interpretation of this result is straightforward: as the number of components increases, the internalization advantage and the price gap \(d\) increases as well, hence the bundler’s market shares and its profits.

\(^{19}\)Note that when \(n=2\), equilibrium outcomes coincide with those found under the hypothesis of maximum differentiation.
A further extension could be figured out. So far we have considered inelastic demand settings, where, by definition, consumers’ choices are just determined, apart from personal tastes, by the comparative price-convenience of market alternatives. In a positive elasticity setting, individual demands depend on both market price differences and own prices, so that a price decrease not only involves a market share effect to the decision-maker’s advantage (although tempered by rivals’ reactions), but also a market size effect (increase of aggregate demand at each location). The horizontal sum of both effects provides with growing incentives to bundle. Based on this, Chioveanu (2004) concludes that, in elastic-demand settings, bundling of (perfectly differentiated) complements may become profitable even with smaller systems.

II.2.IV. CONCLUDING REMARKS

In this section we have adapted a number of recent papers addressing the issue of bundling feasibility and rationality in non-monopolistic settings into a consistent, yet useful for policy reasoning, frame. The conclusions we draw are at odds with the generally accepted view according to which tie-in sales might result in competitive harms only under the condition of the bundler’s (quasi)monopoly in the tying product market. We argue that a non-dominant multi-product firm can credibly commit itself to pure bundling of complementary goods under a large set of market conditions.

However, given the large acceptance of the dominance-hypothesis in legal doctrines, these cases would be hardly challenged under the current judicial approaches, as we will diffusely discuss in the following. Differentiation confers some degree of market power, yet not sufficiently high to find dominance for legal proceedings.

As a final remark, a qualification is needed, to avoid the impression of limited scope for our findings. In the whole paper, we have assumed a generalist firm facing specialist competition. However, our ultimate conclusions also hold in more symmetric settings, where all firms are horizontally integrated in each
component-market. Indeed, once an integrated firm engages in pure bundling, it gets the same immediate and not replicable advantage over rivals described so far, provided that the best reaction (in terms of profits) for competitors is one of independent selling (bundle-against-bundle would be fierce competition) (see proof, Appendix). This first-mover advantage, coupled with a sort of winner-takes-all effect in the long-run (see, below), may activate a potential race-to-bundling, so that packaged sales could emerge also when they are both irrational for those who engage in it and socially harmful.

II. 3. BUNDLING OF INDEPENDENT PRODUCTS

So far we have confined ourselves to systems of complementary goods. When turning the attention to bundles of independent products, some preliminary observations may be worthwhile.

At first sight, it might be tempting to argue that bundling of independent goods -where each individual item is also disposable in rival brands- should not raise competitive concerns, provided that consumers are in principle free to choose those brands which best suit their preferences and are no longer coerced to purchase the entire package (single products have a positive stand-alone value). The risk of substitution -whereby consumers with low valuation for the tied product may switch from the bundle to individual goods separately sold by specialist firms- is supposed to discourage non-monopolists from engaging in a practice that, at the end of the day, may result in lower aggregate demand.

However, in contexts of imperfect competition, a generalist seller of may exploit through bundling its market advantage, to force purchasing of undesired goods by consumers with strict preferences for its tying component (forcing-purchasing effect).

Therefore, incentives to bundle for non-dominant generalist firms rests upon the trade-off between these conflicting effects. Intuitively, the final balance between forcing-purchasing and substitution effect will depend crucially on the degree of brand-fidelity for the tying product.
These basic intuitions can be confirmed in more analytical fashion, through a simplified version of the Kovac’s model (2006). Once again, we consider an asymmetric industry setting - a generalist seller of two non-complementary goods y and z (firm A) competes à la Bertrand against specialist providers (B and C) of individual components- and a two-stage game, in which A commits itself either to pure bundle or to independent selling in the first stage and competes in price against specialist rivals in the second stage of the game. To model product differentiation we use the Hotelling approach. Good y is maximally differentiated (i.e., A and B are located at the opposite extremes of the unit line) and is worth w to each consumer. Instead, z is differentiated only to a limited extent, with consumers having discrete valuations for it. In particular, a portion λ attaches a high valuation (v_h) and the remaining $1-\lambda$ a low valuation (v_l) to the consumption of such a good, with $0 < \lambda < 1$. The parameter $x \in [0;1]$, which describes individual preferences for the first good y, is uniformly distributed on the unit line; its value is independent from personal evaluation for z, whether high (v_h) or low (v_l). As in Kovac (2006), we further imagine that $v_l = 0$ and $v_h = 1$. Finally, we repeat our assumptions about constant and equal (for each firm and product) marginal costs (with $c > 0$), linear transportation costs, and unit individual demands (i.e., people consume either one or zero unit of each good). Therefore, the net utility for individuals purchasing a system made of the component y from firm $i = A, B$ and component z from firm $j = A, C$ will be:

$$U_{ij} = w + nv - t(a-x) - p_{yi} - p_{yj}$$ (8)

where w represents consumer’s reservation price for one unit of y, $v = v_h;v_l$ the value people attach to the consumption of one unit of z, $n = 0,1$ the number of purchased units of z, t the parameter of disutility from buying y from a firm located in a (A is in 0, B in 1) by a consumer located in $x \in (0;1)$ and p_{yc} the price of one unit of variety $v = A, B, C$ of the component $c = y, z$. Finally, we assume w large enough to have the market for y fully covered at equilibrium.
INDEPENDENT PRICING. Given the assumption of sufficiently large \(w \), consumers can choose between buying only \(y \)-disposable in brand \(A \) or \(B \) and purchasing a complete system, whether entirely sold by \(A \) \((A_A)\) or assembled with rival, yet compatible, brands of components \((A_C; B_A)\).

Proposition 5. Under independent pricing for non-complementary goods, equilibrium prices and profits are:

\[
\begin{align*}
p_{A_y} &= p_B = c & \pi_{A_y} &= \pi_B = 0 \\
p_{A_z} &= p_C = t + c & \pi_{A_z} &= \pi_C = 0,5t
\end{align*}
\]

Proof. See Appendix.

PURE BUNDLING. When \(A \) bundles, consumers are allowed to choose among the following three alternatives: (only) \(y \) sold by \(B \) (option-1), the pure bundle \(A_y A_z \) (option-2) and the assembled package \(BC \) (option-3).

When \(p_B \leq v \), option-1 is strictly dominated by option-3, so that rational consumers only choose between the last two alternatives. A consumer is indifferent between them when \(v - P_{A_y A_z} - tx = v - p_B - p_C - t(1-x) \).

Contrarily, if \(p_B > v \), consumers choose only between option-1 and option-2 (option-3 is a strictly dominated strategy). Once again, a generic consumer will be indifferent between them if \(v - P_{A_y A_z} - tx = v - p_B - t(1-x) \).

By combining these two cases, we get that only consumers located in \(x < x^* \) will buy the pure bundle \(A_y A_z \) (option-2), where \(x^* \) is defined by the following equation:

\[
x^*(v) = \frac{p_B + \min\{v, p_C\} - P_{A_y A_z}}{2t} + \frac{1}{2} \tag{9}
\]

In order to analyse the relevance of the forcing-purchasing effect we have to look at the sign of (9) for consumers with low valuation \((v_l = 0)\) for \(z \) a positive \(x^*(0) \) would imply that some consumers are forced to buy an item that is not worth for them. By simple maths, a forcing-purchasing outcome occurs only if \(P_{A_y A_z} - p_B < t \), that is when the price difference is not large enough to compensate the disutility of renouncing to their preferred variety \((A)\) of \(y \).

Note that the unit transportation cost \(t \) is a measure of the strength of
competition for the same consumers or, in the language used so far, of the
dimension of the *substitution-effect*\(^{20}\): the higher its value, the more closest
consumers become captive, providing generalist firms with a certain market
power to force their purchasing of undesired goods\(^{21}\).

Calculation of equilibrium prices and profits of this game is a long, yet
complicate, exercise. Indeed, Kovac (2006) finds six possible types of equilibria
-depending on the sign of \(x^*(0)\) and on the value of \(p_z\) - and a region where
no equilibrium actually exists.

For what is relevant here, under a large set of parameters bundling is found to
be a dominant strategy for generalist non-dominant sellers, this depending on
the interaction between two competing effects. Indeed, the author argues that
bundling spurs both a *competition-softening effect* -whereby competition becomes
softer in the market for the second good and firms get higher mark-ups on \(z\)
-and the already discussed *substitution effect*. The ultimate profitability of bundling
depends on the trade-off between the former positive and the latter negative
profit-driver. In particular, the author identifies two cases of profitable tying,
basically based on the strength of the latter effect, hence on the possibility for
bundlers to force consumers’ demand of undesired good.

A first case, involving \(x^*(0) > 0\), occurs when \(c_2 = c\) is low enough to have
competition softened sufficiently in the market for the second (less
differentiated) good and \(t\) sufficiently large to reduce significantly the scope of
the *substitution effect*. A second and more interesting case, whereby bundling is
profitable in spite of the absence of forced demand (*i.e.*, \(x^*(0) < 0\)), may
occur when the *substitution effect* (low level of \(t\)) is so strong to cause a structural
change of competition in the second (relatively undifferentiated) component-
market, namely a segmentation of the market for \(z\). Indeed, by bundling \(A\)
commits itself to serve only consumers with high valuation \(v_h = 1\) for \(z\), while
leaving \(C\) with market power over consumers with low valuation for it. Then,
such a segmentation of demand results in relaxed price competition (*i.e.*, strong
competition-softening effect), to (all) firms’ advantage and consumers’ detriment.

\(^{20}\) In the extreme case of \(t = 0\) there is no product differentiation: the standard Bertrand
outcome will occur.

\(^{21}\) Note that forcing undesired purchasing could occur unless unbundling and resale on
secondary markets are possible. The opportunity of *arbitrage* would change rational incentives
to engage in bundling in the first place or simply spur technological or design integration.
Finally, in each of these two cases, although via different channels, the ultimate impact on both consumer and total surplus is negative.

A final remark, suggested by studies of Behavioural Economics, may be worthwhile for further extensions of this analysis. As confirmed by several marketing researches, the mere presenting consumers with packages lowers their sensitivity to components’ price, hence increases their willingness to purchase. These outcomes could be justified with *prospect* and *mental accounting theory*: people tend to perceive multiple losses as more punishing than a single loss (Stremersch and Tellis, 2002, p.69). The relevance of such arguments to our aims should be clear: the (perceived) value for the pure bundle A_yA_z should be higher than the value people attach to the consumption of the mixed system BC or than the sum of stand-alone values for y and z. Thus, a stronger market advantage for generalist firms could be easily predicted. In particular, this higher perceived or psychological value is likely to soften the *substitution effect*, while increasing the likelihood of forced purchasing.

II.4. WELFARE IMPACT-ASSESSMENT

II.4.1. INTRODUCTION

In previous sub-paragraphs we have demonstrated, through a survey of recent game-theoretical studies, that, for a diffused number of market circumstances, “bundle against component-selling” represents the Nash stable equilibrium of industries where a non-monopolist or non-dominant multi-product seller competes in prices against single-product suppliers. Therefore, while contrasting the uncritically accepted arguments of the mainstream literature, these conclusions should provide with an hopefully convincing–complementary explanation for the widespread diffusion of bundling in competitive contexts, particularly in those which are more prone to be analysed within our theoretical frame (e.g., telecommunication, banking, information industry).
Quality assurance, cost-savings and other efficiency reasons explain only partially the large diffusion of packaged sales in competitive settings22. More substantially, pro-competitive explanations present the sole good side of the coin. Less reassuring reasons for non-monopolist’s tying should also be considered: bundling allows to exploit the simultaneous presence in each component-market to gain higher profits, absent sufficient entry opportunities, in a way that could make specialist rivals progressively fade out.

At this point of the analysis, the policy-oriented purposes of this work incite a radical shift from the descriptive approach adopted so far to a more normative analysis. Our ultimate objective is assessing social desirability of bundling by non-dominant firms, to make proper inference for competition policy. In particular, in this Section, we will try to answer the following crucial question: Is bundling by non-dominant firms a kind of anticompetitive behaviour to be condemned or mere aggressive exploitation of market opportunities? Once again tools from economics will help us to distinguish between aggressive competition on the merits and anticompetitive unilateral practices.

To this end, it’s worthwhile preliminarily noting that, in spite of diffused inconsistencies in antitrust actual practice -particularly in Europe-, law-and-economics literature convincingly argues in favour of total welfare (\textit{Kaldor-Hicks efficiency}) as normative criterion to which competition policy should conform (Van den Bergh and Camesasca, 2004, p.18). Therefore, the legal treatment of bundling by multi-product non-dominant firms should be defined with reference to its ultimate impact on aggregate welfare, as sum of consumer surplus and industry profits.

When using this criterion, bundling by non-monopolists may result in socially undesirable market outcomes, both in the short-run and in the long-run (entry barriers, dynamic inefficiencies, progressive erosion of rivals’ market shares). In particular, we will distinguish the case of complementary and independent components to show that in the latter case bundling could result in even more serious competitive harms, mostly when involving a certain degree of \textit{forcing-purchasing effect}.

22 For an overview, see Kobayashi (2005).
II.4.2. SHORT-RUN IMPACT

In the above we have assumed homogeneous preferences and consumers’ reservation prices large enough to have the market entirely covered at equilibrium. Under this assumption, the welfare effect of bundling is always negative.

When market is completely served by assertion, the judgement on social desirability of different price strategies amounts to a mere comparison of total transportation costs. Indeed, the shift from independent selling to bundling does not change the sum of consumer surplus and industry profits, while resulting in mere redistribution of aggregate wealth.

As regards welfare assessment, the more limited the option set at equilibrium, the larger the aggregate amount of transportation costs (or, otherwise stated, the aggregate consumers’ disutility of buying products not exactly matching their ideal configuration), the lower the total welfare. Ideally, aggregate wealth would be maximized under the hypothetical situation of “maximum choice”, in which each individual consumer is provided with her ideal good, sold by sellers located in the immediate proximity of her house.

Therefore, “bundle against component-selling” is social undesirable when compared to an equilibrium of “symmetric independent-selling”, because it involves a compression of choice opportunities, hence dissipative travelling costs. Moreover, as suggested by Nalebuff (2000, p.11, footnote 15), in “bundle versus components” equilibria, since prices are no longer symmetric, some consumers that would have naturally preferred a certain other product “are induced to travel inefficiently in order to get the lower price on A bundle”.

To sum up, because of choice restrains and wastes of resources (inefficient travelling), welfare balance is negative in all “bundling versus component” equilibria identified in the above, thus suggesting more conscious policy intervention.

23 In the two-dimensional Hotelling frame, this would amount to the ideal situation in which there is a firm at each point of the unit square.

24 Limited choice is a cost for consumers not directly reflected in the system of market prices, hence not included in standard calculations of consumer surplus.
Finally, the welfare (negative) impact-assessment may be even more severe in case of non-complementary components, particularly when some consumers are forced to buy poorly desired products at an implicit price higher than their personal evaluation. If this occurs and coerced consumers are by no way allowed to resell undesired items on secondary markets, the resulting forcing-purchasing outcome involves inefficient allocation of resources and harms consumers as well as social welfare.

II.4.III. LONG-RUN IMPACT

So far we have only discussed welfare short-run effects. However, when adopting a long-run dynamic perspective, the final balance could be even more alarming, although somehow more difficult to predict in its actual occurrence or simply hard to quantify. Indeed, tie-in sales may act as an entry barrier or as a constraint on innovation incentives.

First of all, bundling could work as entry-deterrent or means of market advantage protection, even when the generalist incumbent does not have (quasi)monopolistic control of any involved market (Nalebuff, 2000, p.11). When a potential competitor is considering whether entering a single component-market, the perspective of getting restricted market shares, coupled with the lower equilibrium prices under bundling, is more likely to make its entry unprofitable. Indeed, the expected profits after entry (π^e) could not be sufficient to cover (sunk) fixed costs of entry (f). As already demonstrated, the former are lower under the incumbent’s bundling than under its independent selling; they also depend on the simultaneous choice of stepping in made by further potential entrants25. Therefore, market entry, even by more efficient operators, could be impeded if the efficiency advantage over the incumbent is not sufficient to invert the negative sign of the incentive compatibility balance ($\pi^e - f$). Note that commitment to bundle is not an issue in this context as in Whinston’s model (1990), since bundling is an ex-post

25 Ideally, π^e is given by the weighted average of profits under all states of the world (i.e. number of competitors in next stages of the game), weighted for their respective probability to occur.
rational strategy even when entry actually occurs; therefore, it represents by itself a credible deterrent.

Instead, multiple, simultaneous entry in each component-market would be unrealistic or irrational. The cost of entry \(f \) would be accordingly doubled or multiplied, while the expected profits would be depressed (for both firms), if the challenger comes in with its own pure bundle (“bundle versus bundle” is the fiercest form of competition -see Appendix-). Therefore, even when \(f \) is not prohibitive and multi-level entry would be -in theory- cost-justified, it’s nevertheless always dominated by entering only at one-level (proof in Appendix), thus leaving stable and unchallenged the market advantage of the tying generalist firm.

Secondly, dynamic efficiency and, in particular, potential entrants’ incentives to engage in innovative activities to develop new or improved processes/products could be frustrated as well. Firms are unlikely to engage in any innovative effort unless they can appropriate the value of their investment in R&D. In our setting, since it makes one-level innovation almost useless, pure bundling by generalist firms may reduce drastically expected profits from commercially exploiting final innovative outcomes\(^{26}\). This implies that private incentives to engage in R&D may be misaligned with socially optimal ones, thus impeding some worthwhile innovation from occurring.

Hopefully, a simple example, based on Choi and Stefanidis (2003), could explain such statements and the relevance of the dynamic inefficiency issues. Let assume for simplicity that R&D efforts to make a vertically differentiated variety of \(y \) and \(z \) can succeed or not and that \(p(a_y) \) and \(p(a_z) \) represent the probability of success in research when a firm invests respectively \(a_y \) and \(a_z \) for innovative improvements of products \(y \) and \(z \). \(\pi_y \) and \(\pi_z \) describe the respective profit figures for successful entry in each component-markets, under the condition that both research succeed. For simplicity we also assume that

\(^{26}\) In order to dispel potential doubts, a clarification is needed. We have argued that, even when costs are not prohibitive, a multi-level entry is not rational in case of incumbent’s bundling. Instead, here we are suggesting that an innovator has strong incentive to succeed at multiple levels. The contradiction is only apparent. A horizontally differentiated entry just increase the number of diversified, yet penalised, bundler’s rivals. Instead, innovative or vertically differentiated entry potentially involves the scratching of the tying incumbent’s market advantage, through better or innovative bundles, when innovators succeed at each level.
when the innovator succeeds at only one-level profits are zero under the
generalist incumbent’s bundling and respectively π_y and π_z under the
incumbent’s independent selling. Therefore, the expected profits for a firm
engaging in R&D when facing a tying incumbent will be:

$$ \Pi_B^e = p(a_y)p(a_z)[\pi_y + \pi_z] $$

Instead, its expected profits when facing independent selling incumbents (i.e.,
successful efforts at one-level can be appropriate, even if the success is not
simultaneously achieved at the other level) will be:

$$ \Pi_{IS}^e = p(a_y)p(a_z)[\pi_y + \pi_z] + p(a_y)(1 - p(a_z))\pi_y + p(a_z)(1 - p(a_y))\pi_z $$

One could easily observe that potential entrants’ private incentives to invest in
R&D are reduced by $p(a_y)(1 - p(a_z))\pi_y + p(a_z)(1 - p(a_y))\pi_z$ under
bundling. A multi-product tying firm can reduce potential entrants’ incentive to
invest in innovation below socially optimal level, particularly when chances of
simultaneous success are remote27.

Finally, in a forward-looking perspective, bundling may result in progressive
erosion of specialist competitors’ market shares. The first-mover advantage of a
multi-product bundler may activate a self-reinforcing process of market power
achieving (market tipping), particularly in settings characterized by network
effects. In industries with network externalities, the utility people get from the
consumption of a certain system of multiple components increases with the
number of users of the same system. Pure bundling could be a subtle way to
exploit such network effects to progressively monopolize sales, while also
protecting yourself from potential entry. Indeed, as observed in previous
sections, by pure bundling the generalist firm is able to get higher market
shares than specialist competitors; this confers an initial position of leadership
(larger customer-base), allowing it to growingly control sales. As put forth by
Motta (2004, p.84):

27 The assumption of zero profits in case of bundling and one-level success is without loss of
generality. Indeed, you get the same result by imposing that $\Pi_{IS}^B >> \Pi_B^B$ and $\Pi_{IS}^B >> \Pi_B^B$,
where Π_i^B and Π_i^{IS} represent the profit figures for one-level ($i = y, z$) successful
innovation, when respectively the incumbent bundles or does not.
“once a certain system manages to gain a certain advantage in consumer preferences, then it may become more and more popular [...] and its rivals might fade out”.

MsOffice is a good example\(^{28}\). Since the late 1980s, Microsoft started to bundle, into the Office package, its word processor (Words) with other applications for oral presentations (PowerPoint), calculations (Excel), database setting (Access), etc., competing against suppliers of specific applications (e.g., WordPerfect for word processors, dBase for database setting, etc.). Only subsequently, some of its rivals started to sell their own (complete) systems. However, this occurred when the market position got by Microsoft through bundling had become too hard to scratch, because of the large customer-base in a market characterized by network effects and learning switching costs.

The same outcome (progressive monopolization) may potentially arise also when component-markets exhibit significant scale economies; by increasing market shares via tying, a multi-product firm can achieve a stable financial advantage over specialist rivals and progressively strengthen its superiority in a self-reinforcing process of sale-control consolidation.

To sum up, as in many formal models of anticompetitive tying, when economies of scale or network effects are present, bundling may allow depriving rivals of significant volumes of sales, thus weakening their future competitiveness. The finding of market mechanisms generating a reliable link between current shares and future competitive advantages is accordingly a crucial step in performing an effective welfare impact-assessment.

\textit{II.4.IV. ADDRESSING POTENTIAL CRITIQUES AND EFFICIENCY EXPLANATIONS}

Both in a short-run and in a long-run dynamic perspective, tying by non-monopolists is likely to harm social welfare, whether the bundle consists of complementary or independent components. However, such conclusions may be criticized as based on unrealistic or over-simplifying hypotheses. For

\(^{28}\) Denicolò, 2000, p.178.
instance, one could argue that the assumption of entirely served market is too restrictive or that models presented apparently ignore those various and widespread efficiencies stemming from tying.

In effect, we share the opinion that our prima facie conclusions should be interpreted cautiously and that policy inferences should be accordingly drawn with extreme prudence. Yet, we strongly support the idea that in most real-life situations our findings appear sufficiently robust. To be sure, we address each possible critique separately to show that a case-by-case approach should prevail over extreme positions, whether drawn in a sense or another.

About the first remark, once relaxing the assumption of entirely served market as in Matutes and Regibeau (1988; 1992) to assume variable levels of reservation prices, in bundling equilibria some consumers may be excluded from the consumption, because of the restriction in the available option set, hence because of the increase in individual transportation costs. The authors argue that moving from bundling to independent pricing involves an upwards shift of industry demand or, otherwise stated, a higher demand at each individual location. In particular, the subsequent enlargement of the choice set enables consumers to assemble systems that are closer to their ideal specification (variety-increasing effect). On the other side, one should also take into account that, under bundling, firms’ incentives to cut prices are strengthened. As demonstrated in the above, this results in lower equilibrium prices when compared to independent pricing, hence in higher market coverage (low-price effect). Which of these effects is destined to prevail is an empirical question, depending on the dimension of parameters and, in particular, on the level of w, to be answered in a case-by-case perspective.

The efficiency issue reserves special consideration. In the above, we have voluntary isolated pro-competitive explanations, such as cost-savings or quality improvements, in order to simplify the analysis and merely focus on the potential for competitive harms. Yet, although not universally present in

29 A more sophisticated way to model the highlighted trade-off between increasing-variety and low-price effect could consist in modelling an elastic-demand settings, where firms’ individual demands depend on perceived expenditure, including transportation costs, at each location.

30 Hylton and Salinger (2001) have argued that beneficial tying is more frequent than harmful tying.
bundling cases, efficiencies matter, thus requiring specific consideration on the positive side of a Kaldor-Hicks assessment.

As regards cost-based explanations, one could argue that scale or scope economies cannot be associated to the very decision to tie. Apart from economies of joint provision, bundling by itself does not involve significant cost-reductions, provided that most economies result from the simultaneous production of different items, regardless of whether they are sold in bundle or separately. However, these conclusions no longer hold where tying does not amount to mere bolting together of separate products (contractual tying), but to an engineering or design integration of different items via bundling-specific production processes (physical tying). Empirical works confirm that marginal or fixed cost-savings may be substantial; such studies also show that, in competitive environments, firms tend to pass on consumers a significant share of these efficiencies (Evans and Salinger, 2004).

Finally, improvement of product quality -including quality protection against the risk of opportunism- and the opportunity of better offering for consumers reserve similar conclusions. Accordingly, some authors distinguish between price and product bundling, where the latter, differently from the former, involves some added value for consumers (Stremersch and Tellis, 2002, p.69). Once again, such an additional value (generating higher reservation price \(v_h - v > 0 \) for the package of the generalist firm) should be taken into account when drawing competition policy conclusions.

In this respect, it’s worthwhile observing that efficiency defences are starting to receive growing consideration also before antitrust authorities and courts. To be sure, US Supreme Court has recognized consumer benefits stemming from the product integration of Internet Explorer and Windows in the landmark Microsoft III decision, while also emphasizing the risk of frustrating valuable innovations under a strict per se standard. Differently, EC competition law has adopted a more conservative, poorly economics-oriented approach towards Microsoft’s integration of Windows Media Player into its operating system. Yet, it remains appreciable the Commission’s explicit opening to efficiency justifications, also in spite of manifest assessment flaws in the case at hand.
In line with such desirable evolutions in legal practice, we think that welfare assessment and policy intervention should also conform to such pro-competitive explanations. We will better stress the point afterward.

II.4.V. CONCLUDING REMARKS

We have demonstrated that bundling may harm social welfare even when practised by firms lacking (quasi)monopolistic power. Tying allows generalist firms to raise profits and impede new entry or worthwhile innovation from occurring, while harming single-product competitors and discouraging them from offering competitive bundles or from coordinating their marketing strategies. This results in limited consumer choice, higher transportation costs, less than socially desirable innovation, constraints to efficient entry and progressively growing concentration of markets. However, the total welfare balance would be incomplete if potential gains from tying (e.g., cost-savings, quality improvements, innovation incentives) were not taken into account as well.

We suggest that conclusions on welfare-effect of non-dominant bundling requires case-specific evidence, to assess if involved benefits -where actually present– have the potential to offset related damages to competition. Admittedly, the fact-dependent nature of most pro-competitive as well as exclusionary effects makes extremely hard to draft statements of general application and thus common legal standards. At first sight, one could just argue that, when the demand is very elastic and bundling amounts to mere bolting together of products, absent any added value for clients, the total welfare balance is likely to be negative. Anyway, one-size-fits-all conclusions resemble utopia.

III. THE LAW OF BUNDLING BY NON-DOMINANT FIRMS: US VERSUS EC COMPETITION LAW

III.1 INTRODUCTION
Both in Europe and in US, antitrust law governing tie-ins and bundling is largely far from being unambiguous and uncontroversial. Besides, the legal treatment of tie-ins represents, without doubts, one of the best instances of divergence. A comparison between the European and US Microsoft case confirms our claim and, in particular, a different inclination in rooting judicial interpretation of competition rules on the prevailing economic thinking.

A common feature in international legal treatment of tying relates to the market power requirement, although, in its actual implementation, US courts and European authorities have followed peculiar, yet contradicting, routes.

Purpose of this section is to analyse critically the history of bundling and tying case-law, with a focus on actual assessment of bundlers’ market power. On this basis, we will try to convince the reader that a strict dominance-test has imposed straining and incongruence in the application of competition rules, as regards the definition of relevant markets, of dominance (Europe) or sufficient economic power (US) and even with respect to the interpretation of the very notion of market power. These findings will serve as an indirect proof of the soundness of our economic arguments and as a basis on which inferring properly informed policy recommendations.

III.2. MARKET POWER REQUIREMENT UNDER US FEDERAL LAW

III.2.I. US TYING LAW

In US antitrust law, tying arrangements are commonly challenged under Section 1 of the Sherman Act (contracts or conspiracies in restraint of trade) and Section 3 of the Clayton Act (conditional sale). The underlying rationale is straightforward: tying law is concerned with identifying and punishing “those forced combined sales that can credibly injure competition” (Hovenkamp, 1999, p.394).

Tying jurisprudence has experienced significant changes over time, evolving gradually from a strict per se hostility (Northern Pacific Railways, 1958) to a recent
and timid (i.e., framed as exception) rule of reason (Microsoft Corp., 2001), passing through the application of an idiosyncratic per se approach (Jefferson Parish, 1984). Moreover, this process of evolution towards growing role for market analysis and efficiency justifications appears not yet over.

To be sure, in the current dominant doctrine, the modified per se approach endorsed by the Supreme Court in the remarkable Jefferson Parish case remains the basic legal standard, although subject to a technological tying exception under the Microsoft III jurisprudence.

In particular, beginning with the landmark Fortner II decision in 197731, the Court has begun to require substantial proof of market power in the tying market and developed a complex test for modified per se illegality. In the Jefferson Parish decision, the majority opinion (four over nine Justices sought a rule of reason) of the Court, while confirming the per se standard applied since the old-days of US antitrust32, also required that tying arrangements had to pass several screens before being considered illegal on their appearance. In that, the Supreme Court moved significantly towards recognizing efficiencies and economic arguments for the widespread diffusion of bundling in modern economies. In particular, the endorsed four-part test, as confirmed in successive judgments, imposed on the plaintiff the burden to prove that: a) two separate products were involved; b) the defendant had sufficient economic power in the tying-product market; c) there was coercion by the seller to force or influence buyer’s choice, and d) the tying arrangement foreclosed a substantial amount of interstate commerce in the tied-product market. No proof of anticompetitive effects was required.

Contrarily, some lower courts have asked for anti-competitive evidence, although its actual assessment appears admittedly far from unambiguous. For example, the proof of competitive harms is sometimes integrated within the assessment of the coercion-test or, in other cases, included into the broad-

31 United States Steel Corp. v. Fortner Enterprises, 429 US,610 (1977)
32 In the earliest decisions, tying agreements was treated as inherently anti-competitive, without factual or market analysis, provided that they “serve hardly any purpose beyond the suppression of competition” (Standard Oil v. United States, 337 US 293,305-6, (1949)). See also, International Salt Co. v. United States, 332 US 392,396 (1947), Northern Pacific Railways Co. v. United States, 356 US,1 (1958) and United States Steel Corp. v. Fortner Enterprise, 394 US 495,503 (1969).
based antitrust inquiry, instead of being treated as a separate requirement. In effect, although neither universally asked nor uniformly assessed, the analysis of anticompetitive effects by itself confirms the ambiguity of resorting to a per se standard. To borrow some words from a prominent US scholar:

“The whole point of per se illegality is to avoid expensive individualized inquiries concerning competitive effects [...] the use of an anticompetitive effects requirement probably reflects considerable doubts about the wisdom of the per se rule” (Hovenkamp, 1999, p.393)

We voluntary skip, because outside of the scope of this work, a complete description of courts’ actual treatment of the aforementioned elements of the Jefferson Parish test. It’s just worthwhile noting that the Supreme Court basically considers such criteria as proxies for competitive harms; a sort of safe-harbor for screening out most false positives (Ahlborn et al., 2004, p.297).

In effect, one could hardly draw a clear line between such a modified per se standard and a rule of reason approach (Abbott and Wright, 2008, p.4-5). Also the Supreme Court seems to acknowledge this point when, in National Collegiate, argues:

“While the Court has spoken of a per se rule against tying arrangements, it has also recognized that tying may have pro-competitive justifications that make inappropriate to condemn without considerable market analysis33”

In effect the multi-part test for per se illegality, as progressively articulated by US courts, increasingly resembles a rule of reason inquiry, in that requires a market analysis and, at least before certain lower courts, even the evidence of anticompetitive effects34 or the acceptance of various efficiency defenses, assessed in isolation (e.g., new product defense) or within the frame of the separate-product test. Because of such idiosyncrasies, the legal treatment of tying arrangements largely departs from the ordinary way of challenging per se

violations, such as price fixing. Yet, it remains a *per se* rule, in that neither involves complete assessment of facts nor leaves sufficient room for efficiency defense.

Causing a Copernican change that is likely to progressively enhance further evolutions, the Court of Appeal challenged the modified *per se* rule under *Jefferson Parish* in the landmark *Microsoft* decision of 2001 (hereinafter *Microsoft III*)\(^{35}\). The Court reasoned that the alleged physical or technological integration raised novel issues, that could not be properly addressed under a *per se* standard. It also held that the efficiencies involved in the case at bar could have hardly been incorporated into a separate-product test. Indeed, direct demand analysis and consumer preferences inquiries, which rely on past information, are “poor proxies for overall efficiencies in the presence of new or innovative integration”. By endorsing a rule of reason, *Microsoft* has introduced a technological exception to the *Jefferson Parish* doctrine. However, the latter still remains the dominant position given the circumscribed scope of *Microsoft* jurisprudence (the judgment is limited to technological integration in “platform-software markets” and, as a matter of law, to the D.C. Circuit).

Microsoft III is unlikely to mark the end of the evolution path towards more economically rooted standards in US tying law. As suggested by several antitrust commentators, the rationale for moving to a rule of reason approach in *Microsoft III* does not rest strictly upon the distinction between factual circumstances at hands and the general run of tying arrangements (Hovenkamp, 2002). Moreover, the tone of the Supreme Court’s decision in *Independent Ink* and the Copernican revolution endorsed in *Leegin* with respect to another practice -the resale price maintenance- historically challenged as a *per se* violation, authorize legitimate beliefs on the Court’s intention to reject *per se* prohibition “when presented with the opportunity to do so” (Abbott and Wright, 2008, p.9). *Independent Ink* has been judged as a “missed opportunity” in this respect (Kobayashi, 2008, p.19).

Anticompetitive tie-ins are implausible in perfectly competitive as well as in oligopolistic settings with homogeneous products: sellers cannot impose the purchasing of unwanted products unless buyers are adequately compensated; competition would drive prices down to marginal costs; consumers would buy only what they want.

However, we have observed that coerced purchasing of undesired goods is possible when sellers have some degree of market power; yet, they do not need dominance or (near) monopoly, as uncritically claimed by courts. Indeed, as argued in Section II, a generalist firm facing specialist (imperfect) competition in each component-market can profitably engage in pure bundling to progressively foreclose markets, even when its original market shares for each component are largely below (quasi)monopoly or dominance thresholds.

Needless to say, in the competitive environments considered in previous models, differentiation confers some degree of market power over more devoted clients; yet this would be hardly sufficient to pass a dominance-test strictly defined36.

In this section we address the issue of whether the current judicial treatment of tying before US courts reflects -implicitly or explicitly- our findings as well as whether those cases of harmful bundling in such more competitive settings would be effectively challenged under the dominant legal standards. To this end, one should distinguish between underlying doctrines and \textit{de facto} judicial approaches. Notwithstanding their contestations to the contrary, US courts’ actual assessment of market power \textit{de facto} departs in some instances from “mainstream” economic predictions, in that the observed power is judged “sufficient” even in absence of large market shares or fudged just by forcing the notion of market power itself or the relevant market definition. In effect, while arguing the need for dominance, courts’ concrete measurement has been

36 In effect, original market shares could be even lower than in our formal frame when removing the simplifying assumption of only one specialist rival in each component-market.
sometimes strained in such a way to include all the circumstances in which a firm was able to coerce consumers, but still could have hardly been challenged through a defendable assessment of a its “power over prices”.

Such a relaxed dominance-test may be interpreted as implicitly confirming our predictions from the preferential viewpoint of the concrete assessment of factual circumstances and anticompetitive effects, that is outside from theoretical abstractions, by definition unsuited with the complexity of real-market practices, given the restrictiveness of their underlying assumptions.

A “FUNCTIONAL” MARKET POWER REQUIREMENT

The establishing of an illegal tying under Section 1 of the Sherman Act and the Section 3 of the Clayton Act requires the proof of dominance in the tying-market, on the premise that bundling would be unprofitable or ineffective as anticompetitive devise when practiced by firms lacking sufficient degree of market power. In particular, mainstream economic theory suggests that, for bundling to be profitable and not replicable by coordinated rivals, sufficient economic power should amount to (quasi)monopoly in the tying-product market (Whinston, 1990). Indeed, absent (near) control of the latter, the bundler may not benefit so much from the exclusion or it would simply be subjected to the risk of coordination among specialist competitors to match its bundle and nullify any exclusionary purpose (Ahlborn et al., 2004, p.331).

Therefore, one has to infer, following economic theories of reference, that the degree of power “sufficient” for legal proceedings should be -at least in theory- particularly high.

To be sure, with respect to the question of how much market power the seller should possess to find illegality, the Supreme Court’s position has rapidly changed over time. While in Times-Picayune the Court appeared to require dominance, the “sufficient threshold” has been progressively lowered far below dominance levels since the Northern Pacific decision. In Fortner I, the Court limpidly argued that “the standard of sufficient economic power does not require […] that the defendant have a monopoly or even a dominant position throughout the market for the tying product”. Conversely, in the very
influential Jefferson Parish judgement, the Court appeared to defiantly return to the dominance-test of Times-Picayune; to this end, it explicitly required a rigorous definition of the relevant market and the computation of sellers’ market shares. A position undisputed –at least, in appearance- in the successive jurisprudence.

However, when moving from theory to practice, courts have departed from well-settled and apparently shared economic arguments, and lowered the standard of proof in its actual implementation. In particular, under the influence of legal doctrines stressing the potential for “coercion” or the “uniqueness” of bundlers’ product attributes, courts have progressively emptied the very notion of market power, de facto depriving the concept of its undisputed economic meaning. The use of several presumptions, ambiguous criteria of uniqueness or misleading inference from ubiquity or growing sales in the tied market have forced a tying-specific notion of market power, not consistent with that credited in the economic literature.

To critically assess such a judicial inclination -including its misplaced trust in disputable presumptions and poor signals of dominance-, some theoretical clarifications are useful, starting from the consolidate definition of market power in industrial economics and antitrust practice.

Market power relates to the ability to raise prices above competitive levels without losing so many sales to make ultimately unprofitable the price increase. The Lerner index formalizes such a concept, by measuring the relative deviation of prices from marginal costs, i.e., through the formula \(L = \frac{(p - c^*)}{p} = \frac{1}{e^d} \), where \(e^d \) represents the residual demand elasticity. However, in most cases, given the unavailability of reliable figures for prices, marginal costs and residual demand, indirect assessments tend to prevail in courtrooms. A preliminary definition of the (product and geographical) boundaries of the relevant market and the subsequent calculation of market share statistics are used to draw indirect inference over the degree of power -in
effect there exist a formal relation between market shares and power over prices. Therefore, apart from the qualification that mere share-assessment may induce misleading or partial inference on firms’ ability to raise prices, the soundness of final decisions depends crucially on the accuracy of the market definition exercise and on qualitative judgments (or quantitative adjustments) for disciplining forces not necessarily included (supply-side substitutes, buyers’ power) or surely excluded (credible entry threats) from the market-share-analysis.

However, even neglecting its difficulties, the definition exercise may be simply biased towards finding the alleged infringement. A certain inclination of antitrust authorities and courts to invert the assessment order – i.e., to firstly determine the occurrence of an abuse and than accordingly define the market – has been denounced by some commentators (Van den Bergh and Camesasca, 2004, p.119). To make an example, in Heatransfer v. Wolksvagenwerk the 5th Circuit Court could find dominance after having narrowly defined the relevant market as “air conditioning for Wolksvagens”38. Another instance of questionable decision is Kodak. While observing that the analysis of competition issues in “aftermarket” would maybe bring us too far, here we will confine ourselves to the observation that a single-brand relevant market, based on the so called “lock-in” doctrine, appears at least debatable.

In this respect, questionable market definitions are not the only expedient used by courts to fudge dominance. Sometimes courts have even missed any preliminary step to scientifically define the market. Indeed, a striking finding in the analysis of US jurisprudence is the application of a halfway (neither indirect nor direct) inference, consisting in the use of presumptions or prima facie signals of dominance and in forcibly consistent or simply implicit (i.e., not analytically drawn) market definitions. For instance, tying markets have been defined accordingly with the boundaries of patents’ claims or simply identified with “unique and unusual” seller’s products, without any inquiry on real substitution opportunities, neither on the demand-side nor on the supply-side.

38 Hovenkamp, 1999, p.397
In the remainder of this section we describe some of these expedients and their reconcilability with defendable and consolidate paradigms, with the aim to prove a certain courts’ “intolerance” towards dominance as meaningful screening for anticompetitive tie-ins, in spite of economic theories of apparent acceptance.

Coercion Presumption. In the tying context, US courts often assess market power *functionally*, as the power to coerce bundled buying and force undesired purchase. In *Yentsch v. Texaco* the 2nd Circuit Court counts “a sufficient economic power in the tying product market to coerce purchaser acceptance of the tied product” among the elements for tying illegality. Likewise, in *Bob Maxfield v. American Motors*, the court confirms “a sufficient market power in the tying market to coerce purchase of the tied product” to be one of the characteristics of an illegal tying arrangement. This *functional* approach is also endorsed by the Supreme Court in the landmark *Jefferson Parish* decision, where the Court defines market power as the “power to force a purchaser to do something he would not do in a competitive market”. A position constantly confirmed in the successive jurisprudence of the Court.

For what is relevant here, such an approach has often translated in mere presumption of dominance, on the premise that coercion would be otherwise unfeasible. Arguably, this approach may be subjected to criticism of circularity. Emblematic in this vein is the Supreme Court’s reasoning in *Northern Pacific*, where the “existence of [a] host of tying agreements in itself” was regarded as “compelling evidence of a [firm’s] great power”, absent any additional sound confirmation. Not surprisingly, it appears sometimes hard distinguishing the proof of dominance from that of coercion, notwithstanding courts’ separate acknowledgement in formal statements of legal doctrines.

Uniqueness. In some cases, dominance has been inferred from unique attributes of the seller’s tying product, without any separate showing of absence of substitutes. In *Fortner I*, the Court reasoned that “the crucial
economic power could be inferred from a mere showing that the unusual attributes of US Steel’s credit offering were reflective of its unique economic advantage over competitors”. Although rejected as a presumption in Fortner II absent confirming market share evidence, some lower courts continue to rely on uniqueness for inferring “sufficient power’, with poor inquiry on facts or on seller’s actual control of prices. In this respect, the Seventh Circuit has held that uniqueness can be used to find market power when there is sufficient evidence that the attributes of the defendant’s tying product -uniquely appreciate by consumers- are not duplicable and create an effective entry barrier.

Moreover, monopoly has been easily presumed in case of patents or copyrighted products -at least before Independent Ink⁴³-, on the premise that uniqueness is by definition guaranteed by the protection of exclusive rights⁴⁴. However, this attitude is at odds with the broad consensus among economists that patents do not necessary confer monopoly in the final markets where they are exploited (Kobayashi, 2008, p.2). Then, if Supreme Court’s unanimous position in Independent Ink of 2006 is destined to change the consolidate approach to monopoly inference even outside the realm of IPRs is difficult to predict. More substantially, the judgement appears implicitly confirming our claims about courts’ functional approach and its hard reconcilability with generally agreed views on market power assessment.

UBIQUITY. As suggested by Hovenkamp (1999, p.402), another economically unjustifiable route followed by US courts to assess market power consists in inferring dominance from tie-in ubiquity or from broad customers’ acceptance to put up with it⁴⁵. Instead of guessing efficiency justifications from widespread diffusion, some courts have judged ubiquity as lack of equally valuable market alternatives, hence as implicit proof of undisputed power.

GROWING SALES OF TIED PRODUCTS. Equally unjustifiable is the use of an end-back perspective consisting in inferring dominance from growing sales in tied

⁴⁵ See, for instance, Parts & Elec. Motors, Inc. v. Sterling Elec., Inc, 826 F2d 712,720 (7thCirc., 1987), where it’s argued that “the existence of several tying arrangements provides significant evidence of the defendant’s power to restrain free competition”.

43
markets. The underlying rationale rests upon the misleading belief that higher sales of the tied product would have been unfeasible and unrealistic absent any control of the tying market. Once again, this line of reasoning misses appropriate recognition of potential efficiencies, in terms of lower cost of production/distribution or added value for consumers. Yet, it misses some of the arguments advanced in section II about the internalization effect (in case of complementary components) or the forcing-purchasing effect (independent goods).

To sum up, the reliance on a functional approach -whereby sufficient economic power is interpreted as “special ability to coerce purchasers”- and the use of other expedients to circumvent restrictive standards of proof may be interpreted as a signal of courts’ dissatisfaction for strict dominance-tests (and eventually for their underlying law-and-economics arguments), notwithstanding courts’ petitio principi to the contrary. In extending competitive concerns outside from the realm of dominant firms, US jurisprudence, maybe unconsciously, confirms our claims.

More explicitly, in the per curiam opinion of Microsoft III, the court refers to a certain “special ability to force purchasers” as a condition for illegality and then clearly argues that “a seller’s market power to coerce can be based on circumstances other than the seller’s market share in the tying product market”. Monopoly and even dominance are neither sufficient nor necessary conditions for the power to coerce, hence for welfare-detrimental bundling to occur, in spite of misplaced critiques of unrealism and irrationality. A strict dominance-screening may leave uncovered some harmful tie-ins and raise the risk of false positives.

Finally, one could also observe that this reasoning is implicit in the choice of challenging tying under Section 1, instead of Section 2 of the Sherman Act. As suggested by Grimes (2002):

“if the only source of a tying seller’s power to abuse lay in the seller’s dominant position in the tying product market, there would be little basis for tying law to be enforced through Section 1 of Sherman Act and

Section 3 of Clayton Act. The Sherman Act’s monopoly provisions (Section 2) might provide an adequate platform for addressing abusive tying practices.”

In effect, in the most recent law-and-economic literature and in some law-cases, the exploitation of informational asymmetries and lock-in effects, insofar translates in a certain control over misinformed or tied-up clients, has been considered as effective source of bundling abuse by non-dominant or non-monopolist sellers (Hylton and Salinger, 2002). In the remarkable Supreme Court’s Eastman Kodak decision, information issues have justified the condemnation of otherwise safe bundling practices. The argument used are general. Consider a producer of a durable good with 20 percent of market share, which tie the sale of such a good and its replacement parts (tying product) to that of repair services (tied product). In case of information deficiencies (customers cannot ex-ante calculate the lifecycle price of the bundle) and consumers lock-in, bundling may result in secondary market foreclosure and exploitation of derivative power over locked-in clients, even when the primary market is sufficiently competitive. Therefore, notwithstanding the lack of dominance in the tying (or primary) market, such a bundle may be held unlawful.

However, absent dominance, there is a more powerful source of bundling abuse, apparently not yet acknowledged by courts or branded as irrational by prominent commentators, namely firms’ “unique” multi-market presence. As formally proved in the above, likewise dominance, information deficiencies and lock-in, also the asymmetric market position of (non-dominant) multi-product firms in differentiated industries confers the “power to coerce” a consistent volume of purchasing, which would be undesired or otherwise oriented (i.e., oriented to other sellers) in perfectly competitive markets. While also taking into account potential efficiencies, such a bundle could harm social welfare and potentially foreclose markets in the long-run, in spite of the lack of dominance. If, as observed, the sufficient economic power requirement amounts, under the dominant US approach, to the assessment of firms’ “potential for coercion”, one draws the striking conclusion that also tying cases
discussed in this paper should pass the functional approach to market power endorsed by US courts.

III.2. CONCLUDING REMARKS

The progressive *de facto* dissociation of the notion of “sufficient economic power” from that of dominance has reduced the critical relevance of market shares and “power over prices” assessment, while making crucial for final decisions formal factors, not necessarily related to the tying product’s substitution opportunities. Consequently, the flexible dominance-test endorsed by US courts may unexpectedly turn out to be effective in challenging cases of harmful bundling by non-dominant firms discussed in this paper, notwithstanding different *petiones principi*.

As a matter of law, this leaves unsolved a crucial issue, namely how the current legal frame may allow to more explicitly distinguish tie-in cases on the basis of bundlers’ market power, in coherence with the whole system of US antitrust law. As we will argue in the last Section, the distinct application of Sherman Act and Clayton Act offers an unexpected way out.

III.3. EC COMPETITION LAW OF BUNDLING

III.3.1. TYING AS ABUSE OF DOMINANCE: A CRITICAL ASSESSMENT OF ART.82 CASE-LAW

A striking finding in the analysis of the European tying law is the influential pressure of old-fashion ideas and outdated principles, which do not properly match the recent evolution in economic thinking. This explains a more hostile attitude on this side of the Atlantic (up to now, tying has been held lawful in none of initiated legal proceedings), also in spite of recent stances of different sign. The “leverage theory” remains the undisputed rationale for most decisions, notwithstanding Chicagoans’ critiques and post-Chicago “qualified” revival (*i.e.*, leverage is rational under limited circumstances). Accordingly, in
the view of the Commission and the European Court of Justice (hereinafter ECJ), the dominance-assessment in the tying-product market appears crucial to determine concrete chances of leveraging.

As regards substantive rules, tie-in sales have mostly been challenged as unilateral practices. Pursuant to the art. 82(2)(d) TCE “making the conclusion of contracts subject to acceptance by the other parties of supplementary obligations” may be condemned as abuse of dominant position. Therefore, as a matter of law, the dominance-assessment is apparently innate to the very application of art. 82, as a difference from US reliance on Section 1 of the Sherman Act. The *per se* hostility towards bundling results directly from the “special responsibility” imposed upon dominant undertakings.

With respect to legal practice, along the line of US antitrust, also EC law is gradually moving towards less rigid criteria for prohibition47. Indeed, in the earliest cases, the ECJ adopted a very formalistic approach: based on findings from the leverage theory, several tying agreements were banned *per se*, with poor inquiry on both market conditions and real effects of foreclosure48. However, in more recent judgements49, the Court has adopted a modified, fact-based *per se* framework, that, as suggested by some prominent scholars, is “almost a carbon copy of the US *per se* approach”50, at least before Microsoft III. In particular, without any distinction between contractual and technological tying, the following four-part test applies under art.82: a) the defendant must be dominant in the tying-product market; b) through bundling consumers are forced to buy separate products; c) tying forecloses competition, and d) there is no objective justification for tie-in.

The policy debate, in particular the need for further moves towards more economics-based assessment (*e.g.*, fact-based reasonability evaluation, efficiency-defence), is basically a common ground on both sides of the Atlantic. Therefore, we send the reader back to the previous analysis of US law

for discussions on legal principles and their economic justifications, while focussing here on the central question of this paper, namely the actual assessment of dominance in EC case-law.

In this respect, it’s worthwhile recalling the definition of dominance under the constant jurisprudence of the ECJ. Since United Brands, dominance has been defined as:

“a position of economic strength […] giving the power to behave to an appreciable extent independently of its competitors, customers and ultimately of its consumers51.”

In its actual implementation, market share figures provide with a first, yet incomplete, proxy for undertakings’ ability to “behave independently”. Their reliability depends crucially on the robustness of the market definition exercise. Other dominance indicators, such as favourable legal provisions, deep pocket, superior technology, vertical integration or well-developed distribution channels may also play a role (Whish, 2003, p.183). Yet, although not conclusive, market shares analysis is crucial to dominance assessment, if anything because of the relative presumption above 50 percent ruled in Akzo52.

When scrutinizing the history of competition practice under article 82, a certain inclination to generously find dominance -through strained market definitions or questionable dominance inference- can be denounced in a number of cases53. For instance, although in a context only partially related to the specific aims of this paper, the narrow definition of the market (single-brand cash registers) in Hugin gives the impression of a certain Commission’s insensitivity to rigorous substitution-analysis, when alleged dominance is difficult to prove.

With more specific reference to tie-in cases, dominance has sometimes been found with a certain degree of uncertainty and approximation. As observed by prominent scholars, “in certain cases, the Commission has defined the market

52 Case C-62/86 (1991) ECR I-3359
53 Faull and Nikpay, 1999, p.138f
so narrowly that a finding of dominance was inevitable. In other cases, clearly different situations have been unreasonably assessed with similar criteria and harshness.

Take the landmark *Hilti* decision and compare its conclusions with those of another pivotal case, *Tetra Pak II*: the similar legal treatment contrasts with large dissimilarities in factual circumstances and defendants’ market shares. *TetraPak* held an incontestable (quasi)monopoly in the market for aseptic cartons (market shares between 90 and 95 percent) and tried to tie the supply of its filling-machines to that of its cartons. The case resembles the ideal frame of economic models, in which (quasi)monopoly -and not just dominance- is found necessary for market power extension.

Instead, in *Hilti*, the defendant’s position was definitely weaker, even too weak to find dominance. In particular, the Commission claimed that nail-guns, Hilti-compatible nails and Hilti-compatible cartridges were three different relevant markets and that the defendant had tried, through tying, to lever its dominance for patented cartridge strips on the more competitive market for nails. The defendant alleged that guns, nails and cartridges were parts of a larger, competitive “fastening-system market.” In effect, even sharing the Commission’s arguments against a “system market” -“the very fact that there exist independent nail and cartridge strip makers who do not produce nail-guns show that these articles have different supply conditions”-, a brand-defined market for consumables remains strongly questionable. Indeed, by definition, a relevant antitrust market -as one is worth monopolizing- describes the set of products (and geographical areas) exercising some reciprocal competitive pressure. One could easily guess that a price increase by Hilti for its own consumables (cartridges or nails) might have resulted in a shift of demand to independent producers of single components or even to rival suppliers of primary products (nail-guns), hence to different brands of compatible consumables. Information asymmetries (i.e., the ability of estimating the lifetime cost of the system), often quoted in case of aftermarkets, appears a minor concern in the context at bar, also considering the degree of buyers’ sophistication. Therefore, market share figures in consumables for nail-guns in general (instead of those for Hilti-compatible nails and cartridges) would have

54 Ahlborn *et al.*, 2004, p. 311.
been a more reliable proxy for the defendant’s ability to profitably raise prices of its consumables. Shares below 50 percent would have presumably led to different conclusions on its dominance (and abuse).

In effect, the list of debatable dominance assessments is longer, in spite of the limited number of European bundling proceedings. Two interesting cases are discussed in depth.

In *London European-Sabena*\(^5^5\), the Belgian airline company Sabena was held liable for having *inter alia* conditioned the access to its computerized reservation-system (tying product) upon London European’s using of its ground-handling services. The establishment of an abuse rested upon a generous finding of dominance, based on the identification of two separate parts of the tying market, depending on the identity (travel agencies or airlines) of those requiring access. The distinction does not make economic sense, provided that Sabena’s “independent behaviour” and airlines’ decisions were both constrained by travel agencies’ access. Indeed, for airlines, the attractiveness of computerized reservation-systems increases with the number of travel operators who are affiliated with and actually use the system. Therefore, the relevant market should have been defined simply as “computerized reservation services for travel agencies in Belgium”. In this market Sabena, holding market shares between 40 and 50 percent and facing competition of five other systems, held a non-dominant position.

In *Napier Brown-British Sugar*, the defendant (BS) was condemned for having abused its dominant position in the UK market for granulated sugar by refusing to sell beet-origin sugar at *ex-factory* prices, as it resulted in tying the delivery to the supply of sugar. However, the Commission’s dominance-assessment is very uncertain and debatable. With market shares of almost 58 percent, the defendant was found dominant in a market narrowly defined in geographic terms (industrial users were willing to import sugar from other Member States), characterized by another strong competitor (Tate and Lyle, 37 percent of market shares, but with sales similar in quantity to those of BS), consistent import figures (between 5 and 10 percent) and limited entry barriers.

in the segment of cane-origin sugar. Moreover, the Court explicitly reasoned that: “imported sugar act as a limit to the price BS may charge for its domestically produced sugar [...] BS has set prices just under that at which it would be consistently profitable to undertake imports”. Although one should formally support such a statement with quantitative evidence (in line with the SSNIP logic), the Court’s wording appears *prima facie* at odds with claims on the defendant’s “independence” of commercial behaviours (recall dominance definition under *United Brands*) and seems confirming other converging evidence presented above.

To conclude, the analysis of the European case-law suggests a certain attitude to easily assess dominance. This may admit two alternative, yet conflicting, explanations: on one hand, competition authorities may be biased from their hostility towards bundling as such or from a formalistic inclination; on the other hand, this attitude may suggest a certain intolerance towards the very idea of dominance as a precondition for any bundling abuse. The former explanation has experienced much more success among commentators; the latter is our modest contribution to the analysis of EC competition policy on bundling.

III.3.1II BUNDLING ISSUES IN CONGLOMERATE MERGERS

The analysis of merger case-law offers additional evidence for the main claims of this work. To be sure, in cases of conglomerate mergers, the theory of “portfolio effects” has justified very controversial decisions, where the Commission has tried to guess incentives and ability of merged entities to engage in exclusionary practices, including tie-ins. Such a proactive attitude may be criticized as involving some syndicate on future intentions and as potentially distorting genuine commercial behaviour. Recent stances of CFI and ECJ, both asking for more convincing evidence of likely exclusionary effects, confirm such claims.

This paper is not the best place to address complex issues about the soundness of EC authorities’ policies, when compared, for instance, to the more market-
friendly US approach. In effect, we share the caution of certain judicial and scholars’ positions asking for more convincing evidence of likely success of anticompetitive practices in the light of facts at bar. And we also share the opinion of those proposing more consideration for less distorting alternatives (behavioural remedies, ex-post investigation under art.82, etc.). However, our position is not extreme. Indeed, we think that conglomerate mergers, under specific circumstances, may actually result in competitive harms.

As a matter of law, EC merger regulation does not require any assessment of (actual or expected) dominance, at least after the recent shift from the previous “dominance-test” to the new test of “significant impediment to competition”, more in line with US Clayton Act and economic insights. However, in a sort of internal, systemic coherence the Commission’s approach in conglomerate mergers raising bundling issues seems not departing so much from that for abusive tying under art.82 (Burnley, 2007). Thus, inter alia the proof of dominance in at least one of merging markets has been required as a precondition for future tying profitability and reasonability.

Nevertheless, the reliance on poor or (maybe) biased evidence of dominance has strongly contributed to criticism towards EC approach, while accordingly increasing suspicions on the use of merger discipline as a tool of political inference for the Commission. More substantially for our aims, strained market power assessments confirm that intolerance towards generally accepted economic arguments, already documented in art.82 cases.

A prominent example is the GE/Honeywell case, a $42 billion merger between two US companies prohibited by the Commission after being authorized by the DOJ. The decision has been heavily criticized as an expression of “an outdated and inappropriate tendency to emphasize the protection of competitors rather than competition". The decision is very complex. Here, we will stress just those issues that are of a certain interest to our ends. Indeed, although the case also involved horizontal and vertical profiles, the main focus of the merger review consisted in the assessment of potential “portfolio effects”, i.e. the risk that the merger may have resulted in non replicable bundle

of complementary products (aircraft engines and avionic and non-avionic complements), hence in an unbeatable market advantage over specialist rivals. We think that the Commission’s concerns rest upon questionable conclusions on GE’s dominance, based on a calculation of 52.5 percent of market shares over the installed base of engines under production. As observed by prominent commentators, this figure is, at most, too optimistic, principally for two reasons57. Firstly, excluding from calculation planes still in service (but no longer produced) amounts to miss a large part of firms’ overall profitability, basically gained in aftermarket (spare parts and repair services). Secondly, the Commission treats all sales of the joint-venture CFMI as integrally belonging to GE, which just held 50 percent of its stocks. If one takes into account both flaws, GE’s market shares would fall to 28 percent; they would be respectively 44 and 36 percent when correcting figures only for the first or the second criticism58. Each of these statistics would have precluded from finding GE’s dominant position in engine for large commercial aircrafts. Moreover, “contributing factors” used to confirm dominance, such as financial strength (deep pocket theory) and vertical integration in financing and leasing activities (through its subsidiary GECAS), are not convincing at all. Finally, the analysis of other competition-enhancing factors (buyers’ countervailing power, strong rivals, bidding competition) is totally missed.

To be sure, the CFI has recently upheld the previous prohibition, confirming the Commission’s concern on horizontal effects. However, the Court has rejected the allegation of “portfolio effects” of foreclosure, on the ground (shareable) that the Commission’s conclusions were not supported by sufficient or convincing evidence of likely anti-competitive impact. However, in the CFI’s judgment, GE’s dominance-assessment was not questioned at all, in spite of manifest flaws.

Without taking any position on EC policy against conglomerate mergers, apart from those already put forth, incentives and ability of merged entities to engage in future bundling would not require any dominance, provided that certain reasonability conditions (about bundle size, elasticity of demand, product differentiation, brand fidelity) are satisfied. This proposed route is in

58 Id.
line with our findings. It would be both legally (dominance is not required under the current merger-test) and economically justifiable, while avoiding the Commission’s artificial attempts -too stuck with conventional views- to find evidence of market power when it does not exist.

III.3.2. ON THE SYSTEMIC INCONSISTENCIES OF EC LAW: TYING CLAUSES IN VERTICAL AGREEMENTS

So far we have observed some inconsistencies between legal framework and its concrete application in competition practice, not dissimilar -except for their forms- from those found in US jurisprudence. In this sub-section, we consider a more manifest, systemic instance of contradictoriness, emerging from a holistic assessment of EC rules.

In particular, we observe that dominance is not required when tying is imposed in vertical agreements, as if there should be more compelling reasons to fear non-dominant bundling in vertical business relationships. However, the distinction would lack any defendable justification, on the ground that economic theories of general acceptance by no way distinguish on the basis of consumers’ identity. These inconsistencies should justify legitimate doubts on EC authorities’ strict convictions in principles ruled under the rubric of art.82.

In effect, the wording of the Regulation 2790/1999 makes explicit our point. Bundling and similar obligations (e.g., single-branding obligations) are not blacklisted, so that tying clauses in vertical agreements are automatically exempted when the supplier’s market shares do not exceed 30 percent. Above the market share threshold, the Commission’s Guidelines call for an effect-based analysis. It’s specified that the establishment of potential anticompetitive effects should be based \textit{inter alia} on the assessment of competitors’ market position, buyers’ countervailing power and entry barriers\footnote{European Commission, 2000, at par. 215-224.}. Apart from a generic reference to the supplier’s market position, in particular to its “importance [...] on the market of the tying product\footnote{\textit{Id.} at 219.}, no proof of
dominance is required. Instead, “when appreciable anti-competitive effects are established, […] a possible exemption under art. 81(3) arises as long as the company is not dominant61”. By implication, this wording makes clear that the Commission judges tying clauses potentially anticompetitive even when adopted by firms lacking dominance62, safe the possibility of individual exemptions.

The same approach is also adopted in the Regulation 772/2004 on technology transfer agreements. In this context, tying could consist in forcing the licensee to also subscribe other licences and/or purchase other goods. When tying does not represent the primary objective of the licensing agreement and contracting parties fall short the market share threshold (20 percent if are competing parties; otherwise, 30 percent), the Commission’s Guidelines invoke a balance between anticompetitive and pro-competitive effects, with the qualification that for the former to realistically occur a “significant degree of market power” in the tying market and an appreciable coverage of the tied market has to be shown63. The wording is vague enough to include also cases of bundling by non-dominant firms. What is “sufficient” market power is not clarified, so that it has to be assessed in a fact-based fashion. In this respect, it’s our contention that a level of market power falling short dominance may be “sufficient” to cause competitive harms, including long-run foreclosure, hence may pass a fact-test.

The inconsistency of tying law under art.81 and 82 with respect to the dominance-requirement, and the lack of sound justifications for differences, appears -to our eyes- the best proof of EC authorities’ doubts on its reasonability of such a requirement.

One could also predict that the disparity of treatment may feed distortions and strained findings of “anticompetitive agreements”, for instance through generous interpretation of tacit acquiescence or other supposed manifestations of

61 Id. at 222.
concurrence of wills in bundling cases64. This, in order to challenge genuine unilateral practices that, in spite of observed competitive harms, could be hardly filed as abuses of dominance65 66. Recently, growing criticism to this questionable approach has been voiced in the law-and-economics literature (Pardolesi, 2006).

\textbf{III.3.IV. CONCLUDING REMARKS}

From the analysis of bundling and tying cases under EC competition law a number of ambiguities emerge both in the application of the same legal framework to different market circumstances (sometimes dominance has been poorly fudged) and in the use of inconsistent approaches in different fields of competition law (dominance is not required when tying clauses are included in vertical agreements). In spite of universal declarations of faith in the “dominance-must”, in practice the requirement has been flawed and largely undermined or inconsistently applied. Although someone may suggest alternative and, maybe, more reassuring explanations (formalistic approach, biased decisions, etc.), we think that such an evidence represents an implicit, fact-based confirmation of our arguments about the inappropriateness of the dominance-test under specific circumstances.

\textbf{IV. CONCLUSIONS AND POLICY SUGGESTIONS}

This paper discusses the economic rationale and the legal treatment of bundling in non-monopolistic settings. In Section II, we show that tying can be a rational strategy for non-dominant firms under a specified set of market conditions, which differ between cases of complementary (low differentiation of at least one component, large bundle size, elastic demand) and independent components (brand fidelity conditions). The social welfare impact, both in a

64 The very idea of concurrence of wills appears at odds with required evidence of a coercive imposition of packaged purchasing.

65 Soubrier, 2007.

66 It has been observed that, under the Clayton Act, no proof of the concerted nature of the practice is required (Leslie, 2007, p.2252-2256).
short-run and in a long-run perspective, is discussed in depth, where efficiency explanations (added value, quality improvement, cost-savings) are also taken into account for ultimate inference. We find that non-dominant bundling may harm social welfare and potentially activate a self-reinforcing process of market power achieving and rivals’ foreclosure, even absent original dominance in any involved market.

Then, in Section III, these economic findings are compared with legal practice, apparently influenced and stuck with the traditional view about non-profitability and ultimate irrationality of non-dominant bundling. Various documented attempts to generously find dominance both in US jurisprudence and in EC competition practice and other systemic inconsistencies authorize a common interpretation of international tying law: in legal proceedings, dominance is considered as a purely formal requirement, more than an economic precondition for exclusionary purposes.

Supported by the analysis of underlying economics and by contradictoriness in legal practice, we conclude with modest proposals to integrate our main findings into a consistent policy frame. In particular, we invoke for more explicit acknowledgement that the dominance-screening may be unreasonable under certain conditions.

In this respect, the US more flexible system appears better fitting such policy recommendations. Following Justice Clark’s opinion in *Times-Picayune*, the distinction between Sherman Act and Clayton Act offers an unexpected way out. A mere duplication of rules would be questionable, as redundant and inexplicable. Instead, when focussing on differences, one could observe that the broader scope of the latter provisions may allow US courts to potentially challenge, under its rubric, non-dominant tie-ins which “may substantially lessen competition”.

Conversely, EC law appears less prone to uphold radical changes. Dominance is connate to the application of art.82, while art.81 is limited in scope (business-to-business vertical relationships) and hard to conciliate with the inherent “unilateral” nature of tying arrangements. In effect, harmful non-dominant tie-ins just represent the “tip of an iceberg”, namely the difficulty,
under EC law, to challenge unilateral practices when adopted by non-dominant undertakings. Instead of resorting to strained, yet debatable, interpretations of statutes, an appreciable economics-based review of competition policy should move in the direction of avoiding formal dominance-screening, when facts document undisputable harms to competition.

At this point, it’s also worthwhile recalling that in some Member States tying arrangements have been challenged regardless of the bundler’s (dominant) position on the basis of rules on fairness competition. Such an evidence becomes more interesting in the light of the opportunity to root fairness concerns on more formal economic reasoning, and requires focussed future research.

As regards specific legal treatment, we think that a modified *per se* legality - whereby non-dominant tying should be considered lawful unless there is strong evidence of anticompetitive effects overweighing efficiencies - could guarantee against the risk of under-deterrence, while also respecting business freedom. Needless to say, a *feasibility-test* reflecting all the conditions we have proved necessary for non-dominant bundling rationality should be preliminary performed, in order to optimize inquiry efforts.

We are aware of potential criticisms phrased in terms of transforming antitrust in a gun shooting in indiscriminate fashion, thus undermining legal certainty and distorting competition on the merits. However, these or similar critiques would be improperly addressed. We are just suggesting “well-defined” non-monopolistic settings under which it’s wise to move from an “absolute” to a “relative presumption” of legality. Even more, legal certainty and genuine competition would be preserved and, if any, enhanced, against strained applications of existing rules, used to bypass unacceptable formal standards.

We hope that this paper could represent an useful starting point for further development. In the closer European perspective, challenging existing legal standards and their uncritically accepted rationale would be in line with proclaimed commitment to a more economics-based approach. It would contribute to make the whole system more effective as a tool of protection of
European consumers and social welfare. It would make decisions more effective and defendable.

Areeda, P., and H. Hovenkamp (2004), Antitrust Law, Aspen Publisher

Bork, R. (1978), Antitrust Paradox, Basic Books

------- and ------- (2003), “Bundling, Entry Deterrence, and Specialist Innovators”, mimeo

Faull, J., and A. Nikpay (1999), The EC Law of Competition

Nalebuff, B. (1999), “Bundling as an Entry Barrier”, working paper available online at Social Science Research Network (SSRN)

ANNEX I: TECHNICAL SECTION

A. COURNOT’S PROBLEM OF COMPLEMENTARY MONOPOLY

Consider a two-component system. A single monopolist of both components would face the following maximization problem (recall that in the text we have assumed linear demand):

$$\text{Max}_p \left[\frac{a}{b} P - \left(\frac{1}{b} \right) P^2 \right]$$

whose FOC yield:

$$\frac{a}{b} - 2 \frac{P}{b} = 0$$

hence:

$$P^M = \frac{a}{2}$$

$$Q^M = \frac{a}{2b}$$

In case of double monopoly - i.e. both components are sold by separate, uncoordinated firms -, each monopolist faces the following problem of maximization:

$$\text{Max}_{p_i} \left[p_i (a - p_i - p_{jsi}) / b \right]$$

whose FOC yield:

$$\frac{a}{b} - 2 \frac{p_i}{b} - \frac{p_{jsi}}{b} = 0$$

hence:

$$p_i = \frac{a - p_j}{2}$$

$$p_j = \frac{a - p_j}{2}$$

By intersection of the two curves, each monopolist set the price:

$$p_i = p_j = \frac{a}{3}$$

and thus:
\[P_{DM} = p_i + p_j = \frac{2a}{3} > P^M \]

and:

\[Q_{DM} = q_i(P_{DM}) + q_j(P_{DM}) = \frac{a}{3b} + \frac{a}{3b} = \frac{2a}{3b} < Q^M \]

B. MONOPOLY IN THE MARKET FOR ONLY ONE COMPLEMENTARY COMPONENT

Consider the case of a multi-product firm facing price competition only in one component-market. It will price at marginal cost in the component-market where facing *Bertrand* competition, while extracting all rents from the monopolistic sale of the other component. In particular, under the assumption of zero marginal costs, it will price such a second item at the price of a single two-component bundler, \(P^M = \frac{a}{2} \) (See Proof 1).

C. PROOF OF PROPOSITION 1

Under independent pricing consumers choose component-by-component. This allows us to give separate look to each component-market. In both markets, consumers are uniformly located on the interval \([0,1]\), at whose extremes are set competing sellers. Given market symmetry, we only focus on the market for \(y \). Rational consumers chose the brand of \(y \) with the lowest perceived cost, including transportation costs.

Therefore, a rational consumer will buy variety \(A \) of component \(y \), only if:

\[x_i + p_{Ay} < (1 - x_i) + p_B \]

hence, if:

\[x_i < \frac{1}{2} + \frac{p_B - p_{Ay}}{2} = x_i \]

(all consumers located between 0 and \(x_i \) will prefer variety \(A \); the remaining will choose variety \(B \))
Therefore, the demand function for A_y will be:

$$D_{A_y} = \frac{1}{2} \frac{P_B - P_{A_y}}{2} = x$$

and for variety B:

$$D_B = 1 - x = \frac{1}{2} \frac{P_B - P_{A_y}}{2}$$

Respective profit functions will be:

$$\pi_{A_y} = p_{A_y} D_{A_y} = \frac{1}{2} p_{A_y} + \frac{p_{A_y}(P_B - P_{A_y})}{2}$$

$$\pi_B = p_B D_B = \frac{1}{2} p_B - \frac{p_B(P_B - P_{A_y})}{2}$$

By finding FOC ($\frac{\partial \pi_{A_y}}{\partial P_{A_y}} = \frac{\partial \pi_B}{\partial p_B} = 0$) and after simple algebra, one can write firms’ reactions functions:

$$p_{A_y} = \frac{P_B + 1}{2}$$

$$p_B = \frac{P_{A_y} + 1}{2}$$

From the intersection of the two reaction curves we find equilibrium prices and profits under the independent pricing game:

$$p_{A_y} = p_B = 1$$ (hence, firms split equally unit-demand, $D_{A_y} = D_B = 0.5$)

$$\pi_{A_y} = \pi_B = 0.5$$

And for the symmetry of the two component-markets, one also gets:

$$p_{A_z} = p_C = 1$$ (hence, firms split equally unit-demand, $D_{A_z} = D_C = 0.5$)

$$\pi_{A_z} = \pi_C = 0.5$$

D. PROOF OF PROPOSITION 2

From (3), the demand for the bundle is a function of the price difference d:
\[D_{AA}(d) = 1 - \left[\frac{1}{2} \left(1 - \frac{d}{2} \right)^2 \right] = \frac{1}{2} \left(1 + d - \frac{d^2}{4} \right) \quad (1.A) \]

FOC for A, B and C are respectively:

\[
\begin{align*}
\frac{\partial \pi_A}{\partial P_{AA}} &= \frac{\partial [D_{AA}(d)P_{AA}]}{\partial P_{AA}} = 0 \\
\frac{\partial \pi_B}{\partial P_B} &= \frac{\partial [(1 - D_{AA}(d))p_B]}{\partial p_B} = 0 \quad D(d) + D'(d)P_{AA} = 0 \\
\frac{\partial \pi_C}{\partial P_C} &= \frac{\partial [(1 - D_{AA}(d))p_C]}{\partial p_C} = 0 \quad [1 - D(d)] - D'(d)p_B = 0 \\
\end{align*}
\]

and:

\[
\begin{align*}
P_{AA} &= -\frac{D(d)}{D'(d)} \\
p_B &= -\frac{[1 - D(d)]}{D'(d)} \quad (2.A) \\
p_C &= -\frac{[1 - D(d)]}{D'(d)} \\
\end{align*}
\]

hence:

\[
d = p_B + p_C - P_{AA} = -\frac{2[1 - D(d)] + D(d)}{D'(d)} = \frac{3D(d) - 2}{D'(d)} \quad (3.A)
\]

From (1.A), we get the first derivative of demand function:

\[
D'(d) = -\frac{1}{2} + \frac{d}{4} \quad (4.A)
\]

(to understand signs, note that we are deriving with respect to \(P_{AA} \) and that
\[
d = p_B + p_C - P_{AA}
\]

By substitution of (1.A) and (4.A) in the(3.A):

\[
\begin{align*}
d &= -\frac{3}{2} \left(1 + d - \frac{d^2}{4} \right) - 2 \left(\frac{1}{2} - \frac{d}{2} \right) \\
&= -\frac{3}{2} - 2 + \frac{3}{2} \cdot \frac{d}{2} - \frac{3}{4} \cdot \frac{d^2}{4} \\
&= \frac{1}{2} \left(-1 + 3d - 3 \cdot \frac{d^2}{4} \right) = -\frac{1}{2} \cdot \frac{1 - 3d + \frac{3}{4} d^2}{1 - \frac{d}{2}} \\
&= \frac{1}{2} \left(-1 + 3d - 3 \cdot \frac{d^2}{4} \right) = -1 + 3d + \frac{3}{4} d^2 \\
&= 1 - 4d + \frac{5}{4} d^2 = 0 \\
&= \frac{4 \pm \sqrt{16 - 5}}{2} \\
&= \frac{5}{2} \\
&= 0.273
\]
hence:

\[D_{AA}(d) = \frac{1}{2} (1 + d - \frac{d^2}{4}) = 0.6271 \]

and:

\[D'(d) = -\frac{1}{2} + \frac{d}{4} = -0.43175 \]

Substituting in (2.4), we get equilibrium prices and profits:

\[P_d = 1.45 \]
\[P_B = P_C = 0.86 \]
\[\pi_A = 0.91 \]
\[\pi_B = \pi_C = 0.32 \]

E. PROOF OF PROPPOSITION 3

The maths is very similar to that of maximum differentiation (see Proof of Proposition 1). The only significant difference is that markets for \(y \) and \(z \) are no longer symmetric. Therefore, we have to separately find – i.e., in each component-market-, firms’ reaction curves, equilibrium prices and profits. To be sure, reaction curves in the market for component \(y \) will be:

\[p_{Ay} = \frac{1 - 2e + p_B}{2} \]
\[p_B = \frac{1 - 2e + p_B}{2} \]

And, in the market for component \(z \):

\[p_Az = \frac{p_C + 1}{2} \]
\[p_C = \frac{p_Az + 1}{2} \]

The separate intersection of reactions curves in both markets provides with equilibrium prices of each variety of the two components, hence with firms’ profit figures (note that each market is equally split between competing suppliers).
\[p_{A_A} = p_B = 1 - 2e \]
\[p_{A_A} = p_C = 1 \]

\[\pi_A = \pi_{A_y} + \pi_{A_z} = 1 - e \]
\[\pi_B = 0.5(1 - 2e) \]
\[\pi_C = 0.5 \]

F. PROOF OF PROPOSITION 4

Case a)

When demand function is given by (7), that is when \(d < 2e \), FOC for our three firms will be:

\[\frac{\partial \pi_{A_A}}{\partial p_{A_A}} = 0 \quad \frac{\partial \pi_B}{\partial p_B} = 0 \quad \frac{\partial \pi_C}{\partial p_C} = 0 \]

or:

\[\frac{\partial [p_{A_A}(1 + p_B + p_C - p_{A_A})/2]}{\partial p_{A_A}} = 0 \]
\[\frac{\partial [p_B(1 + p_B + p_C - p_{A_A})/2]}{\partial p_B} = 0 \]
\[\frac{\partial [p_C(1 + p_B + p_C - p_{A_A})/2]}{\partial p_C} = 0 \]

and their reactions curves:

\[p_{A_A} = \frac{1 + p_B + p_C}{2} \]
\[p_B = \frac{1 - p_C + p_{A_A}}{2} \]
\[p_C = \frac{1 - p_B + p_{A_A}}{2} \]

From the intersection of such curves we get the equilibrium prices \(p_{A_A} = \frac{5}{4} \) and \(p_B = p_C = \frac{3}{4} \). Then, by simple algebra, one could easily verify that such equilibrium is consistent with \(d < 2e \) only if \(e \geq \frac{1}{8} \).
Case b)

When demand function is given by (6), that is when \(d > 2e \), reaction curves (we skip maths, because is much longer, yet based on the same logic of previous proofs) intersect when:

\[
P_{AA} = \frac{-6 + 6e + 4\sqrt{e^2 - 22e + 11}}{5}, \text{ and}
\]

\[
P_B = P_C = \frac{1 - e + \sqrt{e^2 - 22e + 11}}{5}.
\]

This equilibrium is consistent with \(d > 2e \) only if \(e > \frac{1}{8} \).

PROOF OF PROPOSITION 5

Bertrand competition in the market for \(z \) is conductive to marginal-cost price \((p_{zv} = c > 0) \), at which only \(\lambda \) percent of consumers (those having higher valuation \(v_h = 1 \) for it) is willing to buy the item. At this price, both firms \(A \) and \(C \) get zero profits in the market for \(z \).

Instead, because of the assumption of Hotelling competition, the market for \(y \) is equally split between \(A \) and \(B \), each serving a half of the unit line. Therefore equilibrium price and profits will be:

\[
p_{Ay} = p_B = c \quad \pi_{Ay} = \pi_B = 0
\]

\[
p_{Az} = p_C = t + c \quad \pi_{Az} = \pi_C = 0.5t
\]

F. PROOF OF BUNDLE AGAINST BUNDLE EQUILIBRIA

Specialist rivals of differentiated components have no incentive to coordinate their marketing strategy to assemble a rival bundle, since they would get less profits than under autonomous selling.

Proposition. In case of two-components systems, if firm \(A \) bundles and competitors react by assembling a (coordinated) rival bundle, equilibrium prices and profits will be:
\[D_{AA} = D_{BC} = 0.5 \]
\[P_{AA} = P_{BC} = 0.5 \]
\[\pi_{AA} = 0.5 \]
\[\pi_{B} = \pi_{C} = \frac{\pi_{BC}}{2} = 0.25 \]

Proof. After firm \(A \)'s decision to bundle, \(C \) and \(B \) could choose to assemble their own (coordinated) pure bundle. Under maximum differentiation, demand for the bundle \(AA \) is equal to \(\frac{1}{2}(1 + d) \), where \(d = P_{BC} - P_{AA} \) is equal to zero because of assumed symmetry of competing offering. Therefore, both systems get an half of the market, that is \(D_{AA} = D_{BC} = 0.5 \).

FOC are:

\[
\frac{\partial \pi_{AA}}{\partial P_{AA}} = \frac{\partial [D_{AA}(d)P_{AA}]}{\partial P_{AA}} = 0
\]
\[
\frac{\partial \pi_{BC}}{\partial P_{BC}} = \frac{\partial [(1 - D_{AA}(d))P_{BC}]}{\partial P_{BC}} = 0
\]

that is:

\[
D_{AA}(d) + D_{AA}'(d)P_{AA} = 0
\]
\[
[1 - D_{AA}(d)] - D_{AA}'(d)P_{BC} = 0
\]

where:

\[D'_{AA}(d) = -0.5 \]

Hence, equilibrium profits will be:

\[P_{AA} = P_{BC} = -\frac{D_{AA}(d)}{D'_{AA}(d)} = 1 \quad \text{(remember that } d=0) \]

And, under the reasonable assumption of equal sharing between \(B \) and \(C \), equilibrium profits for the three firms will be:

\[\pi_{AA} = 0.5 \]
\[\pi_{B} = \pi_{C} = \frac{\pi_{BC}}{2} = 0.25 \]
By comparing such results with those of “bundle-against-components” equilibrium (see Proposition 2), you easily observe that specialist firms would just harm themselves by coordinating their selling and offering a rival bundle. This also suggests that, in case of two generalist firms competing in each component-market, the first of them engaging in bundling strategy has a consistent first-mover advantage, not replicable in future through rival bundles.